首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate-related potent inhibitors of brain metalloendopeptidase   总被引:10,自引:0,他引:10  
Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of these derivatives, N-[1(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, inhibited the enzyme in a competitive manner with a Ki of 16 nM. The data indicate that the carboxyl group of the N-(1-carboxy-3-phenylpropyl) moiety coordinates with the active site zinc atom and that the remaining part of the inhibitor is necessary for interaction with the substrate recognition site of the enzyme. Replacement of the 1-carboxy-3-phenylpropyl group by a carboxymethyl group decreased the inhibitory potency by more than 3 orders of magnitude, emphasizing the importance of the hydrophobic phenyl group for inhibitor binding to a hydrophobic pocket at the S1 subsite. Replacement of the Tyr residue by an Ala residue decreased the inhibitory potency by more than 20-fold. Changes in the structure of the residue interacting with the S1' subsite could cause a more than 60-fold change in inhibition. The inhibitors were either ineffective or only weakly inhibitory against membrane-bound metalloendopeptidase ("enkephalinase", EC 3.4.24.11), an enzyme highly active in rabbit kidney but also present in brain. The data indicate the presence of an extended binding site in the enzyme with residues interacting with S1, S1', and S3' subsites largely determining inhibitor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Wang J  Fan T  Yao X  Wu Z  Guo L  Lei X  Wang J  Wang M  Jin Q  Cui S 《Journal of virology》2011,85(19):10021-10030
EV71 is the primary pathogenic cause of hand-foot-mouth disease (HFMD), but an effective antiviral drug currently is unavailable. Rupintrivir, an inhibitor against human rhinovirus (HRV), has potent antiviral activities against EV71. We determined the high-resolution crystal structures of the EV71 3C(pro)/rupintrivir complex, showing that although rupintrivir interacts with EV71 3C(pro) similarly to HRV 3C(pro), the C terminus of the inhibitor cannot accommodate the leaving-group pockets of EV71 3C(pro). Our structures reveal that EV71 3C(pro) possesses a surface-recessive S2' pocket that is not present in HRV 3C(pro) that contributes to the additional substrate binding affinity. Combined with mutagenic studies, we demonstrated that catalytic Glu71 is irreplaceable for maintaining the overall architecture of the active site and, most importantly, the productive conformation of catalytic His40. We discovered the role of a previously uncharacterized residue, Arg39 of EV71 3C(pro), that can neutralize the negative charge of Glu71, which may subsequently assist deprotonation of His40 during proteolysis.  相似文献   

3.
Amiloride derivatives are known blockers of the cellular Na+/H+ exchanger and the epithelial Na+ channel. More recent studies demonstrate that they also inhibit ion channels formed by a number of viral proteins. We previously reported that 5-(N-ethyl-N-isopropyl)amiloride (EIPA) modestly inhibits intracellular replication and, to a larger extent, release of human rhinovirus 2 (HRV2) (E. V. Gazina, D. N. Harrison, M. Jefferies, H. Tan, D. Williams, D. A. Anderson and S. Petrou, Antiviral Res. 67:98-106, 2005). Here, we demonstrate that amiloride and EIPA strongly inhibit coxsackievirus B3 (CVB3) RNA replication and do not inhibit CVB3 release, in contrast to our previous findings on HRV2. Passaging of plasmid-derived CVB3 in the presence of amiloride generated mutant viruses with amino acid substitutions in position 299 or 372 of the CVB3 polymerase. Introduction of either of these mutations into the CVB3 plasmid produced resistance to amiloride and EIPA, suggesting that they act as inhibitors of CVB3 polymerase, a novel mechanism of antiviral activity for these compounds.  相似文献   

4.
The initiation of enteroviral positive-strand RNA synthesis requires the presence of a functional ribonucleoprotein complex containing a cloverleaf-like RNA secondary structure at the 5' end of the viral genome. Other components of the ribonucleoprotein complex are the viral 3CD proteinase (the precursor protein of the 3C proteinase and the 3D polymerase), the viral 3AB protein and the cellular poly(rC)-binding protein 2. For a molecular characterization of the RNA-binding properties of the enteroviral proteinase, the 3C proteinase of coxsackievirus B3 (CVB3) was bacterially expressed and purified. The recombinant protein is proteolytically active and forms a stable complex with in vitro-transcribed cloverleaf RNA of CVB3. The formation of stable complexes is also demonstrated with cloverleaf RNA of poliovirus (PV) 1, the first cloverleaf of bovine enterovirus (BEV) 1, and human rhinovirus (HRV) 2 but not with cloverleaf RNA of HRV14 and the second cloverleaf of BEV1. The apparent dissociation constants of the protein:RNA complexes range from approx. 1.7 to 4.6 microM. An electrophoretic mobility shift assay with subdomain D of the CVB3 cloverleaf demonstrates that this RNA is sufficient to bind the CVB3 3C proteinase. Binding assays using mutated versions of CVB3 and HRV14 cloverleaf RNAs suggest that the presence of structural features rather than a defined sequence motif of loop D are important for 3C proteinase-RNA interaction.  相似文献   

5.
Human matrix metalloproteinase-26 (MMP-26/endometase/matrilysin-2) is a newly identified MMP and its structure has not been reported. The enzyme active site S1' pocket in MMPs is a well defined substrate P1' amino acid residue-binding site with variable depth. To explore MMP-26 active site structure-activity, a series of new potent mercaptosulfide MMP inhibitors (MMPIs) with Leu or homophenylalanine (Homophe) side chains at the P1' site were selected. The Homephe side chain is designed to probe deep S1' pocket MMPs. These inhibitors were tested against MMP-26 and several MMPs with known x-ray crystal structures to distinguish shallow, intermediate, and deep S1' pocket characteristics. MMP-26 has an inhibition profile most similar to those of MMPs with intermediate S1' pockets. Investigations with hydroxamate MMPIs, including those designed for deep pocket MMPs, also indicated the presence of an intermediate pocket. Protein sequence analysis and homology modeling further verified that MMP-26 has an intermediate S1' pocket formed by Leu-204, His-208, and Tyr-230. Moreover, residue 233 may influence the depth of an MMP S1' pocket. The residue at the equivalent position of MMP-26 residue 233 is hydrophilic in intermediate-pocket MMPs (e.g. MMP-2, -8, and -9) and hydrophobic in deep-pocket MMPs (e.g. MMP-3, -12, and -14). MMP-26 contains a His-233 that renders the S1' pocket to an intermediate size. This study suggests that MMPIs, protein sequence analyses, and molecular modeling are useful tools to understand structure-activity relationships and provides new insight for rational inhibitor design that may distinguish MMPs with deep versus intermediate S1' pockets.  相似文献   

6.
The hydrophobic S1' subsite is one of the major determinants of the substrate specificity of thermolysin and related M4 family proteases. In the thermolysin-like protease (TLP) produced by Bacillus stearothermophilus (TLP-ste), the hydrophobic S1' subsite is mainly formed by Phe130, Phe133, Val139 and Leu202. In the present study, we have examined the effects of replacing Leu202 by smaller (Gly, Ala, Val) and larger (Phe, Tyr) hydrophobic residues. The mutational effects showed that the wild-type S1' pocket is optimal for binding leucine side chains. Reduction of the size of residue 202 resulted in a higher efficiency towards substrates with Phe in the P1' position. Rather unexpectedly, the Leu202-->Phe and Leu202-->Tyr mutations, which were expected to decrease the size of the S1' subsite, resulted in a large increase in activity towards dipeptide substrates with Phe in the P1' position. This is probably due to the fact that 202Phe and 202Tyr adopt a second possible rotamer that opens up the subsite compared to Leu202, and also favours interactions with the substrate. To validate these results, we constructed variants of thermolysin with changes in the S1' subsite. Thermolysin and TLP-ste variants with identical S1' subsites were highly similar in terms of their preference for Phe vs. Leu in the P1' position.  相似文献   

7.
BACKGROUND: Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS: The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS: Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.  相似文献   

8.
The diazonium salt of 5'-(4-aminophenyl phosphoryl)-uridine 2'(3')-phosphate reacts stoichiometrically with pancreatic ribonuclease and modifies only one tyrosyl residue, which was identified as Tyr 73 in the amino acid sequence. The modification does not inhibit the biological activity of RNAase on ribonucleic acid, although a large change in the binding constant towards cytidine cyclic phosphate was observed. The modification can be inhibited by addition of the competitive inhibitor cytidine 2'(3')5'-diphosphate and may indicate that Tyr 73 is the most exposed residue or has a unique reactivity towards this reactive substrate analog.  相似文献   

9.
The glutathione transferases (GSTs) represent a superfamily of dimeric proteins. Each subunit has an active site, but there is no evidence for the existence of catalytically active monomers. The lock and key motif is responsible for a highly conserved hydrophobic interaction in the subunit interface of pi, mu, and alpha class glutathione transferases. The key residue, which is either Phe or Tyr (Tyr(50) in human GSTP1-1) in one subunit, is wedged into a hydrophobic pocket of the other subunit. To study how an essentially inactive subunit influences the activity of the neighboring subunit, we have generated the heterodimer composed of subunits from the fully active human wild-type GSTP1-1 and the nearly inactive mutant Y50A obtained by mutation of the key residue Tyr(50) to Ala. Although the key residue is located far from the catalytic center, the k(cat) value of mutant Y50A decreased about 1300-fold in comparison with the wild-type enzyme. The decrease of the k(cat) value of the heterodimer by about 27-fold rather than the expected 2-fold in comparison with the wild-type enzyme indicates that the two active sites of the dimeric enzyme work synergistically. Further evidence for cooperativity was found in the nonhyperbolic GSH saturation curves. A network of hydrogen-bonded water molecules, found in crystal structures of GSTP1-1, connects the two active sites and the main chain carbonyl group of Tyr(50), thereby offering a mechanism for communication between the two active sites. It is concluded that a subunit becomes catalytically competent by positioning the key residue of one subunit into the lock pocket of the other subunit, thereby stabilizing the loop following the helix alpha2, which interacts directly with GSH.  相似文献   

10.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

11.
Earthworm fibrinolytic enzyme component A (EFEa) from Eisenia fetida is a strong fibrinolytic enzyme that not only directly degrades fibrin, but also activates plasminogen. Proteolytic assays further revealed that it cleaved behind various P1 residue types. The crystal structure of EFEa was determined using the MIR method and refined to 2.3A resolution. The enzyme, showing the overall polypeptide fold of chymotrypsin-like serine proteases, possesses essential S1 specificity determinants characteristic of elastase. However, the beta strand at the west rim of the S1 specificity pocket is significantly elongated by a unique four-residue insertion (Ser-Ser-Gly-Leu) after Val217, which not only provides additional substrate hydrogen binding sites for distal P residues, but also causes extension of the S1 pocket at the south rim. The S2 subsite of the enzyme was partially occluded by the bulky side-chain of residue Tyr99. Structure-based inhibitor modeling demonstrated that EFEa's S1 specificity pocket was preferable for elastase-specific small hydrophobic P1 residues, while its accommodation of long and/or bulky P1 residues was also feasible if enhanced binding of the substrate and induced fit of the S1 pocket were achieved. EFEa is thereby endowed with relatively broad substrate specificity, including the dual fibrinolysis. The presence of Tyr99 at the S2 subsite indicates a preference for P2-Gly, while an induced fit of Tyr99 was also suggested for accommodation of bigger P2 residues. This structure is the first reported for an earthworm fibrinolytic enzyme component and serine protease originating from annelid worms.  相似文献   

12.
The actions of three isozymes of human pancreatic alpha-amylase (HPA) on phenyl alpha-maltopentaoside, phenyl alpha-maltotetraoside, and their derivatives which have an iodo, an amino, or a carboxyl group at their first or penultimate glucopyranosyl residue from the non-reducing-end were examined. The results revealed that there was no difference in the actions of the three isozymes on the modified substrates and suggested the presence of five subsites (S3, S2, S1, S1', and S2') and a hydrophobic amino acid residue at subsite S3 in the active site of HPA. As compared with the action of human salivary alpha-amylase (HSA) on the same substrates, HPA had a tendency to release more phenyl alpha-glucoside from every substrate; however, an iodo, an amino, and a carboxyl group of the substrates had the same effects on the binding modes of the substrates to the active site of HPA as seen in the case of the salivary enzyme. This result indicates that the three-dimensional structures of the active sites of both alpha-amylases are quite similar except for some minor changes at subsites S3 and S2'.  相似文献   

13.
The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide (197)QRATKM(202) and its variant (197)RRATKM(202) to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5' sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1'-Arg198, occupies the S1' site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2' subsite is formed by Arg363, Asn368 and Asp370, while S3' subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4'-Lys201 makes hydrogen bond with Gln162. P5'-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.  相似文献   

14.
Matrix metalloproteinases are believed to play an important role in pathological conditions such as osteoarthritis, rheumatoid arthritis and tumor invasion. Stromelysin is a zinc-dependent proteinase and a member of the matrix metalloproteinase family. We have solved the crystal structure of an active uninhibited form of truncated stromelysin and a complex with a hydroxamate-based inhibitor. The catalytic domain of the enzyme of residues 83-255 is an active fragment. Two crystallographically independent molecules, A and B, associate as a dimer in the crystals. There are three alpha-helices and one twisted, five-strand beta-sheet in each molecule, as well as one catalytic Zn, one structural Zn and three structural Ca ions. The active site of stromelysin is located in a large, hydrophobic cleft. In particular, the S1' specificity site is a deep and highly hydrophobic cavity. The structure of a hydroxamate-phosphinamide-type inhibitor-bound stromelysin complex, formed by diffusion soaking, has been solved as part of our structure-based design strategy. The most important feature we observed is an inhibitor-induced conformational change in the S1' cavity which is triggered by Tyr223. In the uninhibited enzyme structure, Tyr223 completely covers the S1' cavity, while in the complex, the P1' group of the inhibitor displaces the Tyr223 in order to fit into the S1' cavity. Furthermore, the displacement of Tyr223 induces a major conformational change of the entire loop from residue 222 to residue 231. This finding provides direct evidence that Tyr223 plays the role of gatekeeper of the S1' cavity. Another important intermolecular interaction occurs at the active sit of molecule A, in which the C-terminal tail (residues 251-255) from molecule B inserts. The C-terminal tail interacts extensively with the active site of molecule A, and the last residue (Thr255) coordinated to the catalytic zinc as the fourth ligand, much like a product inhibitor would. The inhibitor-induced conformational change and the intermolecular C-terminal-zinc coordination are significant in understanding the structure-activity relationships of the enzyme.  相似文献   

15.
Due to their involvement in many pathological conditions, matrix metalloproteinases (MMPs), are very attractive therapeutic targets. Our study focuses on one of them, MMP-2, which is involved in tumor progression and metastasis. Recently, the solution structure of the catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020) was published by Feng et al. Using the Hanessian group published binding affinity data and the structure published by Feng as a basis, we have built a binding affinity model by targeting the S(2)' pocket of the enzyme with a set of nine alpha-N-sulfonylamino hydroxamic acid derivatives. Two binding geometries of each ligand have been generated corresponding to two binding modes denoted A and B, respectively, of which the first one is targeting the S(2)' pocket and the second one the S(1) pocket. For the binding affinity model developed for mode A the computed activities show a rmsd of 0.583 kcal/mol as compared with the experimental data, and a correlation coefficient r(2) of 0.779, while in the case of the binding mode B a rmsd of 0.834 kcal/mol and correlation coefficient r(2) of 0.500, respectively, were obtained. In conclusion, our data suggest a higher probability for the Phe(76) gated S(2)' open form pocket to accommodate the substituent alpha versus the wide solvent exposed S(1) subsite, probability which some research groups could have overlooked due to extensive use in their calculations of non revealing S(2)' pocket open state crystallographic structures instead of NMR ones.  相似文献   

16.
Muraki M  Harata K  Sugita N  Sato KI 《Biochemistry》2000,39(2):292-299
The synergism between apolar and polar interactions in the carbohydrate recognition by human lysozyme (HL) was probed by site-directed mutagenesis and affinity labeling. The three-dimensional structures of the Tyr63-->Leu mutant HL labeled with 2',3'-epoxypropyl beta-glycoside of N,N'-diacetylchitobiose (L63-HL/NAG-NAG-EPO complex) and the Asp102-->Glu mutant HL labeled with the 2',3'-epoxypropyl beta-glycoside of N-acetyllactosamine were revealed by X-ray diffraction at 2.23 and 1.96 A resolution, respectively. Compared to the wild-type HL labeled with the 2', 3'-epoxypropyl beta-glycoside of N,N'-diacetylchitobiose, the N-acetylglucosamine residue at subsite B of the L63-HL/NAG-NAG-EPO complex markedly moved away from the 63rd residue, with substantial loss of hydrogen-bonding interactions. Evidently, the stacking interaction with the aromatic side chain of Tyr63 is essential in positioning the N-acetylglucosamine residue in the productive binding mode. On the other hand, the position of the galactose residue in subsite B of HL is almost unchanged by the mutation of Asp102 to Glu. Most hydrogen bonds, including the one between the carboxylate group of Glu102 and the axial 4-OH group of the galactose residue, were maintained by local movement of the backbone from residues 102-104. In both structures, the conformation of the disaccharide was conserved, reflecting an intrinsic conformational rigidity of the disaccharides. The structural analysis suggested that CH-pi interactions played an important role in the recognition of the carbohydrate residue at subsite B of HL.  相似文献   

17.
18.
Papain characteristically has a strong preference for encoded L-aromatic amino acids (Phe > Tyr) at P2 position. We re-examined papain S2 specificity using structural analogs of Phe, in fluorogenic substrates of the series: dansyl-Xaa-Arg-Ala-Pro-Trp (Xaa = P2 residue). Kinetic analyses showed that the S2 pocket accommodates a broad spectrum of Phe derivatives. Papain is poorly stereoselective towards Dns-(D/L)-Phe-Arg-Ala-Pro-Trp and binding is not critically affected by replacement of the benzyl ring by the non-aromatic lateral chain of cyclohexylalanine. The Km was significantly improved by mono- and di-chlorination of Phe, or by its substitution by an electronegative group-like NO2, but the specificity constant was unchanged. Shortening or lengthening the side chain by adding or removing a methylene group impairs the P2/S2 interactions significantly, as do constrained structural analogs of Phe. Incorporation of benzyl-substituted phenylalanyl amino acid could help to design peptide-derived inhibitors with greater affinity and bioavailability.  相似文献   

19.
The 2A proteinases (2A(pro)) from the picornavirus family are multifunctional cysteine proteinases that perform essential roles during viral replication, involving viral polyprotein self-processing and shutting down host cell protein synthesis through cleavage of the eukaryotic initiation factor 4G (eIF4G) proteins. Coxsackievirus B4 (CVB4) 2A(pro) also cleaves heart muscle dystrophin, leading to cytoskeletal dysfunction and the symptoms of human acquired dilated cardiomyopathy. We have determined the solution structure of CVB4 2A(pro) (extending in an N-terminal direction to include the C-terminal eight residues of CVB4 VP1, which completes the VP1-2A(pro) substrate region). In terms of overall fold, it is similar to the crystal structure of the mature human rhinovirus serotype 2 (HRV2) 2A(pro), but the relatively low level (40%) of sequence identity leads to a substantially different surface. We show that differences in the cI-to-eI2 loop between HRV2 and CVB4 2A(pro) translate to differences in the mechanism of eIF4GI recognition. Additionally, the nuclear magnetic resonance relaxation properties of CVB4 2A(pro), particularly of residues G1 to S7, F64 to S67, and P107 to G111, reveal that the substrate region is exchanging in and out of a conformation in which it occupies the active site with association and dissociation rates in the range of 100 to 1,000 s(-1). This exchange influences the conformation of the active site and points to a mechanism for how self-processing can occur efficiently while product inhibition is avoided.  相似文献   

20.
The active site of Bacillus macerans cyclodextrin glucanotransferase (CGTase) was examined by use of derivatives of phenyl alpha-maltopentaoside and phenyl alpha-glucoside as the substrates and acceptors, respectively. The active site of this enzyme is considered to be composed of tandem subsites (S4, S3, S2, S1, S1', S2', etc.) geometrically complementary to several glucose residues, and the alpha-1,4-glycosidic linkage of a substrate is split between S1 and S1'. The features of subsites S3 and S4 of the glycon binding site were estimated from the modes of the enzymatic action on phenyl alpha-maltopentaoside (G-G-G-G-G-phi; G, glucose residue; phi, phenyl residue; -, alpha-1,4-glycosidic bond) and its derivatives in which the CH2OH groups of the non-reducing-end glucose residues were converted to CH2I (IG-G-G-G-G-phi; IG, 6-deoxy-6-iodo-D-glucose residue), CH2NH2 (AG-G-G-G-G-phi; AG, 6-amino-6-deoxy-D-glucose residue), or COOH (CG-G-G-G-G-phi; CG, glucuronic acid residue). p-Nitrophenyl alpha-glucopyranoside (G-P; P, p-nitrophenyl residue) was used as an acceptor. HPLC analysis of the digests revealed that the CG residue of CG-G-G-G-G-phi was excluded from subsite S3, while it was accommodated in subsite S4. The Km and Vmax values for CG-G-G-G-G-phi were remarkably larger and smaller, respectively, than those for any other substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号