首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Microreaction technology is an interdisciplinary area of science and engineering. It has attracted the attention of researchers from different fields in the past few years and consequently, several microreactors have been developed. Enzymes are organic catalysts used for the production useful substances in an environmentally friendly way, and have high potential for analytical applications. However, relatively few enzymatic processes have been commercialized because of problems in the stability of enzyme molecule, and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies and focus our discussion on enzyme microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared with the conventional reactors. Fundamental techniques for enzyme microreactors and important applications of this multidisciplinary technology in chemical processing are also included in our topics.  相似文献   

2.
Microreaction technology is an interdisciplinary field combining science and engineering. It has attracted the attention of researchers from different fields for the past few years, resulting in the development of several microreactors. Enzymes are one of the catalysts used in microreactors: they are useful for substance production in an environmentally friendly way and have high potential for analytical applications. However, few enzymatic processes have been commercialized because of problems with stability and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of enzyme-immobilized microchannel reactors; fundamental techniques for micro enzyme-reactor design and important applications of this multidisciplinary technology in chemical processing are also included in our topics.  相似文献   

3.
Microreactors are finding increasing application in the field of combinatorial chemistry. In the past few years, microreactor chemistry has shown great promise as a novel method on which to build new chemical technology and processes. It has been conclusively demonstrated that reactions performed within microreactors invariably generate relatively pure products in high yield. One of the immediate and obvious applications is therefore in combinatorial chemistry and drug discovery.  相似文献   

4.
The twenty first century has witnessed several advances in synthetic chemistry, among them microreactors. It is expected that these devices will have a considerable impact on synthetic organic chemistry since they offer a wide range of applications in various fields. Perhaps the synthesis of peptides deserves mention in this regard as these molecules are emerging as therapeutics and offer several advantages over the so-called small molecules. This minireview does not aim to address microreactors in detail, but explains various peptide synthesis methods that involve microfluidic techniques, highlighting the need for further improvement and expansion of microdevices/microreactors.  相似文献   

5.
We developed a multiplex sequencing-by-synthesis method combining terminal phosphate-labeled fluorogenic nucleotides (TPLFNs) and resealable polydimethylsiloxane (PDMS) microreactors. In the presence of phosphatase, primer extension by DNA polymerase using nonfluorescent TPLFNs generates fluorophores, which are confined in the microreactors and detected. We immobilized primed DNA templates in the microreactors, then sequentially introduced one of the four identically labeled TPLFNs, sealed the microreactors and recorded a fluorescence image after template-directed primer extension. With cycle times of <10 min, we demonstrate 30 base reads with ~99% raw accuracy. Our 'fluorogenic pyrosequencing' offers benefits of pyrosequencing, such as rapid turnaround, one-color detection and generation of native DNA, along with high detection sensitivity and simplicity of parallelization because simultaneous real-time monitoring of all microreactors is not required.  相似文献   

6.
The fields of application of microreactors are becoming wider every year. A considerable number of papers have been published recently reporting successful application of enzymatic microreactors in chemistry and biochemistry. Most are devices with enzymes immobilized on beads or walls of microfluidic channels, whilst some use dissolved enzymes to run a reaction in the microfluidic system. Apart from model systems, mostly with glucose oxidase, horseradish peroxidase and alkaline phosphatase, the principal fields of application of microreactors are tryptic digestion of proteins and polymerase chain reaction in automated analyses of proteomic and genetic material, respectively. Enzymatic microreactors also facilitate characterization of enzyme activity as a function of substrate concentration, and enable fast screening of new biocatalysts and their substrates. They may constitute key parts of lab-on-a-chip and muTAS, assisting the analysis of biomolecules. This review provides systematic coverage of examples of reports on enzymatic microreactors published recently, as well as relevant older papers.  相似文献   

7.
Proteolysis by sequence-specific proteases is the key step for positive sequencing in proteomic studies integrated with mass spectrometry (MS). The conventional method of in-solution digestion of protein is a time-consuming procedure and has limited sensitivity. In this study, we report a simple and rapid system for the analysis of protein sequence and protein posttranslational modification by multienzymatic reaction in a continuous flow using the enzyme (trypsin, chymotrypsin, or alkaline phosphatase)-immobilized microreactor. The feasibility and performance of the single microreactor and tandem microreactors that were connected by the different microreactors were determined by the digestion of nonphosphoprotein (cytochrome c) and phosphoproteins (β-casein and pepsin A). The single microreactor showed rapid digestion compared with that of in-solution digestions. Multiple digestion by the tandem microreactors showed higher sequence coverage compared with that by in-solution or the single microreactor. Moreover, the tandem microreactor that was made by using the combination of protease-immobilized microreactor and phosphatase-immobilized microreactor showed the capability for phosphorylation site analysis in phosphoproteins without the use of any enrichment strategies or radioisotope labeling techniques. This approach provides a strategy that can be applied to various types of linking microreactor-based multienzymatic reaction systems for proteomic analysis.  相似文献   

8.
Recent research in the area of bioactive carbohydrates has shown the efficiency of oligosaccharides as signal molecules in a lot of biological activities. Newly observed functions of oligosaccharides and their abilities to act as specific regulatory molecules on various organisms have been more and more described. A successful development of these bioactive molecules in future needs efficient processes for specific oligosaccharides production. To exploit them for putative industrial scale up processes, two main strategies are currently investigated: the synthesis (chemical or bioconversion processes) and the polysaccharide cleavage (chemical, physical or biological processes). Nevertheless, if new manufacturing biotechnologies have considerably increased the development of these functional molecules, the main drawback limiting their biological applications is the complexity to engender specific glycosidic structures for specific activities. In the recent years, new enzymatic reactors have been developed, allowing the automatic synthesis of oligosaccharide structures. This review focuses on the knowledge in the area of bioactive oligosaccharides and gives the main processes employed to generate them for industrial applications with challenges of monolith microreactors.  相似文献   

9.
《IRBM》2008,29(2-3):128-132
In this paper, several surface functionalisation techniques for application in biosensors and microreactors, namely silanisation of glass and silicon and polymer modification were described. The modified surface of silicon samples was investigated by atomic force microscopy (AFM) and Fourier transformed infrared spectroscopy (FTIR) techniques. The found with AFM distinction between the surfaces of three silicon samples, bare, and the ones modified with aminopropyltriethoxysilane/glutaraldehyde (APTS/GA) and enzyme, consisted in a change of roughness of the surfaces, namely for the non-modified and modified ones were 3, 8 and more than 40 nm, respectively. The IR results for the third sample, modified with enzyme, proved the presence of the peptide coupling, visible as Amide-I and Amide-II bounds, specific for proteins. In addition, the performances of two types of microreactors batch and lamella type were compared. In the case of the batch type microreactors, the most effective immobilisation technique was those using polymeric beads made of reduced polyacrylonitrile (PAN) and glass beads modified with APTS/GA, where maximal pH difference (ΔpHmax) was about 3.3 and 2.5 for over 30 days, respectively. The worse results were obtained for the batch type microreactor loaded with beads of polyacrylamide type copolymer EUPERGIT® where the output signal was decreased to 1.2 pH unit after 10 days of the microreactor operation. The performances of both lamella type microreactors modified with APTS/GA and glycidoxypropyltriethoxysilane (GOPS) were rather poor, i.e. the maximal output signal was about 0.3 pH unit after 10 and five days of their operation, respectively.  相似文献   

10.
The crystallization of monoacylated proteins has been investigated using a model system. Acylated derivatives of bovine pancreatic ribonuclease A, differing in their acyl chain lengths (10 to 16 carbon atoms), have been prepared using reverse micelles as microreactors. With one fatty acid moiety per polypeptide chain, covalently attached to the NH2 terminus of the protein, all the modified proteins have similar enzymatic activity and hydrodynamic radius as the native protein. Only the caprylated derivative can give crystals which diffract to high resolution. The resolved structure indicates that: (i) the protein folding is not modified by the chemical modification, (ii) the capryl moiety is not buried within the molecule but available for external interactions. Dynamic light scattering experiments on concentrated solutions show that protein-protein interactions are dependent on acyl chain length. Proteins with the longest attached chains (14 and 16 carbon atoms) tend to self-associate through acyl group interactions. Received: 4 October 1996 / Accepted: 13 December 1996  相似文献   

11.
A modular system for high-output solid-phase combinatorial synthesis has been designed and developed. The system employs three technological innovations to achieve its high efficiency and reliability: (1) application of microreactors as the reaction units in solid-phase synthesis; (2) use of radiofrequency tagging as the non-chemical tracking method; and (3) development of the directed sorting technology for split & pool synthesis. The system has been successfully applied in the synthesis of compound libraries of several hundred to several thousand compounds in multi-milligrams per compound quantity by many organizations.  相似文献   

12.
Mono‐ and multimetallic nanoparticles (NPs) have diverse and tunable physicochemical properties that arise from their compositions as well as crystallite size and shape. The ability to control precisely the composition and structure of NPs through synthesis is central to achieving state‐of‐the‐art designer metal NPs for use as catalysts and electrocatalysts. However, a major limitation to the use of designer metal NPs as catalysts is the ability to scale their syntheses while maintaining structural precision. To address this challenge, continuous flow routes to metal NPs involving the use of droplet microreactors are being developed, providing the synthetic versatility necessary to achieve known and completely new nanostructures. This progress report outlines how the chemistry and process parameters of droplet microreactors can be used to achieve high performing nanocatalysts through control of NP composition, size, shape, and architecture and outlines directions toward previously unimaginable nanostructures.  相似文献   

13.
Disulfide bonds in proteins are important not only for the conformational stability of the protein but also for the regulation of oxidation–reduction in signal transduction. The conventional method for the assignment of disulfide bond by chemical cleavage and/or proteolysis is a time‐consuming multi‐step procedure. In this study, we report a simple and rapid analysis of disulfide bond from protein digests that were prepared by the thermostable protease‐immobilized microreactors. The feasibility and performance of this approach were evaluated by digesting lysozyme and BSA at several temperatures. The proteins which stabilize their conformations by disulfide bonds were thermally denatured during proteolysis and were efficiently digested by the immobilized protease but not by free protease. The digests were directly analyzed by ESI‐TOF MS without any purification or concentration step. All four disulfide bonds on lysozyme and 10 of 17 on BSA were assigned from the digests by the trypsin‐immobilized microreactor at 50°C. The procedure for proteolysis and the assignment were achieved within 2 h without any reduction and alkylation procedure. From the present results, the proteolysis approach by the thermostable protease‐immobilized microreactor provides a strategy for the high‐throughput analysis of disulfide bond in proteomics.  相似文献   

14.
The future of hydrogen as fuel strongly depends on the possibility to produce it in an economic and clean way. Hydrogen can be produced from carbohydrates and water under mild conditions by means of a multistep synthetic pathway (13 enzymes) with very high yield. Crossover inhibitions and different optimal conditions of involved enzymes hinder the use of one‐pot approach. Immobilization of enzymes in coupled individual reactors may avoid this problem. This work deals with the immobilization in silica‐based hydrogels of one key enzyme of this pathway: glucose 6‐phosphate dehydrogenase from Leuconostoc mesenteroides. The carriers were prepared with an ethylene glycol‐modified silane, two polymers (polyethylene oxide and Pluronic®) and amino groups created by 3‐aminopropyltriethoxysilane. These parameters influenced the enzymatic activity after immobilization. Gels prepared by addition of polyethylene oxide gave the best results and were used as monoliths in microreactors with two different geometries. The systems showed a high operational stability but a low effective enzyme activity. Enzyme leaching and a nonideal flow pattern may account for the low activity observed. This work is possibly the first one dealing with the immobilization of glucose 6‐phosphate dehydrogenase in silica‐based gels for its application in flow‐through microreactors.  相似文献   

15.
Laccases catalyse the oxidation of a wide range of substrates by a radical-catalyzed reaction mechanism, with a corresponding reduction of oxygen to water in a four-electron transfer process. Due to that, laccases are considered environmentally friendly enzymes, and lately there has been great interest in their use for the transformation and degradation of phenolic compounds. In this work, enzymatic oxidation of catechol and L-DOPA using commercial laccase from Trametes versicolor was performed, in continuously operated microreactors. The main focus of this investigation was to develop a new process for phenolic compounds oxidation, by application of microreactors. For a residence time of 72 s and an inlet oxygen concentration of 0.271 mmol/dm3, catechol conversion of 41.3% was achieved, while approximately the same conversion of L-DOPA (45.0%) was achieved for an inlet oxygen concentration of 0.544 mmol/dm3. The efficiency of microreactor usage for phenolic compounds oxidation was confirmed by calculating the oxidation rates; in the case of catechol oxidation, oxidation rates were in the range from 76.101 to 703.935 g/dm3/d (18–167 fold higher, compared to the case in a macroreactor). To better describe the proposed process, kinetic parameters of catechol oxidation were estimated, using data collected from experiments performed in a microreactor. The maximum reaction rate estimated in microreactor experiments was two times higher than one estimated using the initial reaction rate method from experiments performed in a cuvette. A mathematical model of the process was developed, and validated, using data from independent experiments.  相似文献   

16.
Cellulose-starch gel mixtures (4 wt% cellulose and 4 wt% starch gel) were mixed with water in a 9:1, water:organic, volume ratios and rapidly heated (ca. 20s) to high-temperatures (ca. 520 degrees C) and high-pressures (ca. 800 MPa) in 0.04 microL microreactors to examine their characteristics and reaction products. Contents of the microreactors were observed during the heating with microscopy and residues were analyzed with chromatography and spectroscopy. At high water loading densities (ca. 980 kg/m(3)), heating of either starch gels or cellulose-starch gel mixtures gave a light yellow colored liquid associated with 5-hydroxymethylfurfural along with solid products that had strong absorptions at 1630 and 1530 cm(-1) associated with aromatic and polycyclic ring compounds. At low water loading densities (<700 kg/m(3)), a brown colored liquid was generated that had an oil-like, paraffinic hydrocarbon character along with gases, but no particles were formed. The cellulose-starch gels studied in this work can possibly be used as feedstocks in continuous batch microreactor systems.  相似文献   

17.
Present study aimed to immobilise the α-glucosidase on suitable supports to construct enzymatic microreactors and their subsequent applicability in efficient inhibitor screening from the Chinese Yam (Dioscorea opposita Thunb.) peel. A type of lamellar and porous composites (rGO@Fe3O4) were synthesised with a facile one-step solvothermal method and employed as carriers to construct enzymatic microreactors for screening α-glucosidase ligand from the Chinese Yam peel in league with the high performance liquid chromatography and mass spectrometry (HPLC-MS). The immobilisation amount of α-glucosidase on rGO@Fe3O4 under the optimised conditions was about 40?μg α-glucosidase/mg carriers. Furthermore, the binding capacities of screened inhibitors, 2,4-dimethoxy-6,7-dihydroxyphenanthrene and batatasin I, were 35.6 and 68.2%, respectively. Hence, considering their high screening efficiency and excellent magnetic separation ability, these as-prepared nanocomposite consisting of rGO and Fe3O4 may be potential supports for the enzyme (such as α-glucosidase) immobilisation for rapid α-glucosidase inhibitors screening from the diverse nature resources.  相似文献   

18.
This study reports a general strategy for the encapsulation of various enzymes in amphiphilic hollow carbonaceous microspheres (CMs). We found that enzymes could be spontaneously encapsulated in the interior cavity of the CMs via hydrophobic interactions. Due to strong hydrophobic interactions and robust confinement, leaching of the physically adsorbed enzymes is substantially restricted. As a novel immobilization matrix, the CMs display many significant advantages. They are capable of encapsulating a wide range of proteins/enzymes of different sizes, which can then be used in both aqueous and organic media and retain high activity, stability, and excellent reusability. Moreover, CMs could be considered as efficient microreactors that provide a favorable microaqueous environment for enzymes in organic systems. Therefore, this doubly effective and simple immobilization approach can be easily expanded to many other enzymes and has great potential in a variety of enzyme applications.  相似文献   

19.
A one-pot strategy was first presented in this paper to synthesize gelatin/hydroxyapatite (HAP) composite microspheres in a water-in-oil (W/O) emulsion. Using gelatin droplets as microreactors and colloid protective medium, needle-like nano-HAP crystals (5 nm x 60-100 nm) in form of clusters were homogeneously and orderly precipitated within gelatin matrix. The results of scanning electron microscopy (SEM) revealed that the as-prepared microspheres with an average diameter of 7.5 microm displayed a narrow particle size distribution, a high dispersity and a naturally porous structure. This microsphere material is expected to have a great potential for both controlled drug release and faster bone in-growth in bone tissue engineering.  相似文献   

20.
Synthetic cells, which are assembled anew from well-defined molecular parts, open-up new possibilities for nanotechnological applications due to their reduced complexity and high functionality. In this review, we discuss how synthetic cells are being implemented in different fields ranging from biomedicine to material science. On one hand, synthetic cells can serve as microreactors that house metabolic networks and as therapeutic carriers that directly communicate with living cells. On the other hand, synthetic cells can become active components in a new-generation of materials that process inputs and result in autonomous and adaptive behavior. These early examples highlight the potential impact that synthetic cells will have in future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号