首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using native polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate, the detergent extracts of sonic submitochondrial particles (SMP) were separated into three protein fractions capable of accomplishing the proteolysis of cytochrome c and three other fractions catalyzing the hydrolysis of N-a-benzoyl-L-arginine-p-nitroanilide (BAPA) and N-a-benzoyl-L-arginine-B-naphthylamide (BANA). The fractions isolated from the gel were subjected to a thorough anaylsis. Cytochrome c hydrolases were shown to have identical molecular weights (17000) but different isoelectric points (4.0, 4.2 and 4.4). The total cytochrome c hydrolase activity of these enzymes was inhibited by phenylmethylsulfonylfluoride but was insensitive to ethylenediaminetetraacetate and o-phenanthroline. Three BANA (BAPA) hydrolases have identical Mr values (approximately 17500) but different pI values (4.2, 4.3 and 4.7). Apart from the indicated hydrolases, the detergent extracts of SMP were shown to contain minor components with identical activities distinguished by the tightness of binding to the inner mitochondrial membrane, Mr and sensitivity to proteinase inhibitors. The observed phenomenon is considered to be due to the polymorphism of proteinases coupled with the inner mitochondrial membrane.  相似文献   

2.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

3.
Human cytochrome c oxidase was isolated in an active form from heart and from skeletal muscle by a fast, small-scale isolation method. The procedure involves differential solubilisation of the oxidase from mitochondrial fragments by laurylmaltoside and KCl, followed by size-exclusion high-performance liquid chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed differences between the subunit VI region of cytochrome c oxidases from human heart and skeletal muscle, suggesting different isoenzyme forms in the two organs. This finding might be of importance in explaining mitochondrial myopathy which shows a deficiency of cytochrome c oxidase in skeletal muscle only. In SDS polyacrylamide gel electrophoresis most human cytochrome c oxidase subunits migrated differently from their bovine counterparts. However, the position of subunits III and IV was the same in the human and in the bovine enzymes. The much higher mobility of human cytochrome c oxidase subunit II is explained by a greater hydrophobicity of this polypeptide than of that of the subunit II of the bovine enzyme.  相似文献   

4.
Three proteins of the inner mitochondrial membrane of Neurospora crassa were found to be covalently modified with a derivative of pantothenic acid. One of these proteins is a subunit of cytochrome c oxidase and two are subunits of the ATPase-ATP synthase. Cells of a pantothenate auxotroph of N. crassa were labeled with [14C]pantothenic acid, and mitochondrial proteins containing radiolabeled pantothenate were detected by electrophoresis of detergent-solubilized mitochondria. Mitochondria from cells that were colabeled with [14C]pantothenate and [3H]leucine were reacted with specific antisera against the cytochrome c oxidase and F1-ATPase enzyme complexes. Electrophoresis of the labeled subunits of these isolated complexes showed that the [14C]pantothenate-associated peptides corresponded to [3H]leucine-labeled subunit 6 of cytochrome c oxidase and two [3H]leucine-labeled subunits (tentatively identified as subunits 8 and 11) of the ATPase-ATP synthase. Pantothenate modification of these enzyme subunits, which are synthesized on extramitochondrial ribosomes, may contribute to their transport and assembly into mitochondria, or it may participate in the catalytic activity of the assembled enzymes.  相似文献   

5.
The aorta in male mice shows higher activities of several lysosomal hydrolases and of cytochrome c oxidase, an inner mitochondrial membrane enzyme, than in female mice. Orchiectomy abolishes this sex difference, whereas testosterone administration induces an accretion of RNA and protein and elevated activities of lysosomal hydrolases and cytochrome c oxidase. However, the outer mitochondrial membrane enzyme monoamine oxidase is unaffected by sex, orchiectomy or testosterone. Thus, androgens regulate cell growth and enzymes associated with lysosomes and the inner mitochondrial membrane.  相似文献   

6.
Yeast mitochondria and purified yeast cytochrome c oxidase incorporated into micelles of the nonionic detergent Tween 80 were equilibrated with the hydrophobic aryl azides 5-[125I]iodonaphthyl-1-azide or S-(4-azido-2-nitrophenyl)-[35S]thiophenol. The azides were then converted to highly reactive nitrenes by flash photolysis or by illumination for 2 min and the derivatized cytochrome c oxidase subunits were identified by gel electrophoresis and radioactivity measurements. 5-[125I]Iodonaphthyl-1-azide labeled mainly the three mitochondrially made Subunits I to III and the cytoplasmically made Subunit VII. Subunits IV to VI or cytochrome c bound to the purified enzyme were labeled 9- to 90-fold less. Essentially the same result was obtained with S-(4-azido-2-nitrophenyl)-[35S]thiophenol except that Subunit V was labeled as well. In contrast, all seven subunits as well as cytochrome c were heavily labeled when the enzyme was dissociated with dodecyl sulfate prior to photolabeling with either of the two probes. These data indicate that all subunits of yeast cytochrome c oxidase except Subunits IV and VI are at least partly embedded in the lipid bilayer of the mitochondrial inner membrane.  相似文献   

7.
A protein, which was immunoreactive to antibody against cytochrome c oxidase, was found in the mitochondrial membrane fraction of sweet potato root tissue. The protein was associated relatively weakly with the mitochondrial inner membrane as compared with cytochrome c oxidase. It exerted no cytochrome c oxidase activity and contained no heme a. The protein was purified by phenyl-Sepharose column chromatography and polyacrylamide gel electrophoresis. The molecular weight of its polypeptide chain was 57,000. In addition, the protein decreased during aging of tissue slices. It is therefore not improbable that the protein is a precursor of cytochrome c oxidase composed of only the subunits of cytoplasmic origin, since aging of tissue slices has been shown to result in an increase in the enzyme activity which is inhibited by chloramphenicol but not by cycloheximide.  相似文献   

8.
The hydrolysis of ATP, ADP or GTP was characterized in mitochondria and submitochondrial particles since a tightly-bound ATPase associated with the inner mitochondrial membrane from the human placenta has been described. Submitochondrial particles, which are basically inner membranes, were used to define the location of this enzyme. Mitochondria treated with trypsin and specific inhibitors were also used. The oxygen consumption stimulated by ATP or ADP was 100% inhibited in intact mitochondria by low concentrations of oligomycin (0.5 microgram/mg) or venturicidine (0.1 microgram/mg), while the hydrolysis of ATP or ADP was insensitive to higher concentrations of these inhibitors but it was inhibited by vanadate. Oligomycin or venturicidine showed a different inhibition pattern in intact mitochondria in relation to the hydrolysis of ATP, ADP or GTP. When submitochondrial particles were isolated from mitochondria incubated with oligomycin or venturicidine, no further inhibition of the nucleotide hydrolysis was observed, contrasting with the partial inhibition observed in the control. By incubating the placental mitochondria with trypsin, a large fraction of the hydrolysis of nucleotides was eliminated. In submitochondrial particles obtained from mitochondria treated with trypsin or trypsin plus oligomycin, the hydrolysis of ATP was 100% sensitive to oligomycin at low concentrations, resembling the oxygen consumption; however, this preparation still showed some ADP hydrolysis. Native gel electrophoresis showed two bands hydrolyzing ADP, suggesting at least two enzymes involved in the hydrolysis of nucleotides, besides the F1F0-ATPase. It is concluded that human placental mitochondria possesses ADPase and ATP-diphosphohydrolase activities (247).  相似文献   

9.
During early postnatal development there was an increase in the specific activity of a number of oxidative enzymes localized on the outer and inner mitochondrial membrane. The succinic oxidase complex of the inner mitochondrial membrane, whose activity in 1-day-old rats was 50% of the value in adult animals, attained the maximum on about the 10th day after birth. Activity of the choline and the proline oxidase complex, both of which are also localized in the inner mitochondrial membrane, was minimal in 1-day-old rats and went on rising after the 10th day. Rotenone-insensitive NADH-cytochrome c reductase activity, which is localized on the outer mitochondrial membrane, remained stable up to the 10th day, and rose between the 10th and the 90th day. Developmental changes in monoaminooxidase activity, which is likewise localized on the outer mitochondrial membrane, followed a similar course to the choline and proline oxidase complexes. The amount of cytochromes a+alpha3 and cytochrome b in isolated mitochondria did not alter during development. The protein spectrum of the mitochondrial particles, determined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate, likewise displayed no marked changes during postnatal development. The above findings show that the metabolic functions of the mitochondria mature during development and that changes in the different enzymes have their own characteristic time course.  相似文献   

10.
A specific antibody against cytochrome c1 (pig heart mitochondria) has been obtained. It inhibits the electron transport of the respiratory chain in the intact mitochondria at the cytochrome c1 site of inner mitochondrial membrane ; but it has no effect on the isolated submitochondrial particles (inside-out inner mitochondrial membrane vesicles free of any outer membrane or outside-out inner membrane). Thus the topologic position of cytochrome c1 in the inner mitochondrial membrane is asymetrically lcoated on the outer side of the inner mitochondrial membrane. These results agree with our previous researches on ATP-ase and cytochromes b, c and a, indicating the location on the inner side for the first one, transmembranous for the last one, on the outer side for the others respiratory chain components. Thus the electron transport from cytochrome b to a takes place in the outer region of inner mitochondrial membrane and the transmembranous location of cytochrome-oxidase facilitates the transfer of the electrons to oxygen.  相似文献   

11.
The orientation of the thirteen polypeptides of rat-liver cytochrome c oxidase in the inner mitochondrial membrane was studied by proteolytic digestion of mitoplasts and sonicated particles. After separation by sodium dodecylsulfate gel electrophoresis proteins were transferred on nitrocellulose, and individual polypeptides were identified by incubation with polypeptide-specific antisera, followed by fluorescein-isothiocyanate-conjugated protein A. The three catalytic polypeptides I-III and seven nuclear coded polypeptides (IV, Vb, VIa, VIc, VIIa, VIIb and VIII) were found accessible to proteases from the cytoplasmic phase. Polypeptides II, IV, Va, Vb and VIa were accessible from the matrix phase, indicating a transmembraneous orientation of polypeptides II, IV, Vb and VIa. Together with data on cross-linking and on cytochrome-c-protected labeling of polypeptides, a model of the cytochrome c oxidase complex was developed. It is suggested that the cytochrome c binding site on polypeptide II is surrounded by several nuclear-coded polypeptides, which may modulate the affinity of the enzyme towards cytochrome c.  相似文献   

12.
The mitochondrial electron transport chain complexes are large multisubunit complexes embedded in the inner membrane. We report here that in the yeast Saccharomyces cerevisiae, the cytochrome bc(1) and cytochrome c oxidase complexes co-exist as a larger complex of approximately 1000 kDa in the mitochondrial membrane. Following solubilization with a mild detergent, the cytochrome bc(1)-cytochrome c oxidase complex remains stable. It was analyzed using the techniques of gel filtration and blue native-polyacrylamide gel electrophoresis. Direct physical association of subunits of the cytochrome bc(1) complex with those of the cytochrome c oxidase complex was verified by co-immunoprecipitation analysis. Our data indicate that the cytochrome bc(1) complex is exclusively in association with the cytochrome c oxidase complex in yeast mitochondria. We term this complex the cytochrome bc(1)-cytochrome c oxidase supracomplex.  相似文献   

13.
Isolated cytochrome c oxidase was fractionated by native-gel electrophoresis in Triton X-100, and a preparation of enzyme almost completely free of the usual impurities was recovered. This fraction was used to generate antibodies specific to cytochrome c oxidase. These antibodies inhibited cytochrome c oxidase activity rapidly and completely and immunoprecipitated an enzyme containing seven different subunits from detergent-solubilized mitochondria or submitochondrial particles. Reaction of detergent-solubilized cytochrome c oxidase with [35S]diazobenzenesulfonate labeled all seven subunits although I and VI were much less reactive than the other five components. When cytochrome c oxidase was immunoprecipitated from mitochondria which had been reacted with [35S]DABS, subunits II and III were the only components labeled. When the complex was immunoprecipitated from labeled submitochondrial particles, II, III, IV, V, and VII were all labeled. Polypeptides I and VI were not labeled from either side of the membrane. These results confirm earlier studies which showed that cytochrome c oxidase spans the mitochondrial inner membrane and is asymmetrically arranged across this permeability barrier.  相似文献   

14.
Cytochrome c oxidase in prokaryotes   总被引:2,自引:0,他引:2  
Abstract Several heme aa 3-type cytochrome c oxidases, purified from the cytoplasmic membranes of bacteria, are able to catalyze the same reactions as the structurally far more complex eukaryotic enzyme, i.e., electron transport from cytochrome c to oxygen coupled to proton translocation. However, these oxidases show a very simple subunit pattern, and moreover, individual polypeptides even have homologous amino-acid sequences. This review summarizes the present data on purified bacterial cytochrome c oxidases and relates these findings to results obtained with the mitochondrial enzymes.  相似文献   

15.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

16.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

17.
A fraction (15-20% of the total protein) of a preparation of bovine submitochondrial particles (SMPs) binds to concanavalin A-sepharose. The bound membranes displayed succinate dehydrogenase, cytochrome oxidase, and ATPase activity, which, as in SMPs, were inhibited by malonate, cyanide, and oligomycin, respectively. These results indicate that the bound membranes are inner mitochondrial membranes and that they contain a glycoprotein which was recognized by concanavalin A. It was possible to repeatedly perform the three enzyme assays, one after the other, in the same gel with the bound membranes. Long-term stability tests (22 days) showed that cytochrome oxidase was much more stable in the membranes bound to the gel than in SMPs, while the ATPase activity decayed at a similar rate in the two conditions. Thus, inner mitochondrial membranes bound to ConA-Sepharose appear to be a potentially interesting model for the study of immobilized multienzymatic complexes.  相似文献   

18.
The effect of the nonionic detergent Lubrol on the oxidation of endogenous and exogenous cytochrome c by cytochrome oxidase in intact and fragmented mitochondria was studied. Mitochondria and mitochondrial fragments from liver, kidney, heart, and skeletal muscle have been used. Negatively stained preparations of intact mitochondria showed the particles of Fernández-Morán on the matrix side of their inner membrane system: under these conditions, the oxidation rate of externally added cytochrome c was very high, and it was stimulated very poorly by Lubrol. Mechanical fragmentation of liver mitochondria yielded vesicles with a smooth external profile: also under these conditions, the oxidation of externally added cytochrome c was very high, and poorly stimulated by Lubrol. The oxidation of endogenous cytochrome c was also unaffected by Lubrol. On the other hand, fragmentation of heart and skeletal muscle mitochondria yielded vesicles having numerous particles of Fernández-Morán on their external profiles. Under these conditions, the oxidation of exogenous cytochrome c was low and was markedly stimulated by Lubrol. On the contrary, no activation of the oxidation of endogenous cytochrome c was induced by the detergent. The results indicate a difference in the permeability properties of the two faces of the inner mitochondrial membrane: a permeability barrier for cytochrome c is suggested to exist at the inner face.  相似文献   

19.
To assess the potential adaptive value of mtDNA, we evaluated functional properties and thermal sensitivity of key mitochondrial enzymes in two species that have originally evolved in different thermal environments (arctic charr, Salvelinus alpinus, and brook charr, S. fontinalis), as well as in their hybrids. We measured the activity of two enzymes of the electron transport system (cytochrome c oxidase and NADH-ubiquinone oxidoreductase), one enzyme of the mitochondrial matrix (citrate synthase), and one enzyme of the anaerobic glycolysis (lactate dehydrogenase) in the red muscle at three temperatures (6 degrees C, 12 degrees C and 18 degrees C). Surprisingly, the species presented no significant differences in enzyme activity, thermal sensitivity or thermostability of key metabolic enzymes even though they evolved in different thermal environments and present important differences in amino acid sequences. It seems that amino acid substitutions between those species have minor impact on the functional properties of mitochondrial enzymes studied. The thermal sensitivity results (Q(10)) obtained for inner-membrane mitochondrial enzymes differed somewhat from those of mitochondrial matrix or cytosolic enzymes. This result indicates the modulation of thermal sensitivity of all mitochondrial inner-membrane processes by a common parameter, which could be the structural and functional properties of membrane phospholipids.  相似文献   

20.
In mammals, hydrocortisone synthesis from cholesterol is catalyzed by a set of five specialized enzymes, four of them belonging to the superfamily of cytochrome P-450 monooxygenases. A recombinant yeast expression system was recently developed for the CYP11B1 (P45011beta) enzyme, which performs the 11beta hydroxylation of steroids such as 11-deoxycortisol into hydrocortisone, one of the three mitochondrial cytochrome P-450 proteins involved in steroidogenesis in mammals. This heterologous system was used to test the potential interaction between CYP11B1 and CYP11A1 (P450scc), the mitochondrial cytochrome P-450 enzyme responsible for the side chain cleaving of cholesterol. Recombinant CYP11B1 and CYP11A1 were targeted to Saccharomyces cerevisiae mitochondria using the yeast cytochrome oxidase subunit 6 mitochondrial presequence fused to the mature form of the two proteins. In yeast, the presence of CYP11A1 appears to improve 11beta hydroxylase activity of CYP11B1 in vivo and in vitro. Fractionation experiments indicate the presence of the two proteins in the same membrane fractions, i.e. inner membrane and contact sites of mitochondria. Thus, yeast mitochondria provide interesting insights to study some molecular and cellular aspects of mammalian steroid synthesis. In particular, recombinant yeast should permit a better understanding of the mechanism permitting the synthesis of steroids (sex steroids, mineralocorticoids and glucocorticoids) with a minimal set of enzymes at physiological level, thus avoiding disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号