首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under F1-ATPase irradiation by visible light two characteristic features of flavin main activities were detected: I/ESR signal g = 2.00 appearance which was in favor of flavin photochemical electron reduction and 2/photostimulated O2 consumption by F1-ATPase. The dependence of ESR signal g = 2.00 intensity on visible light wavelength completely coincided with the same dependence obtained for proteinless model riboflavin + ADP. Flavin localization in proximity of ADP bound in the enzyme active site was suggested. Under F1-ATPase irradiation by light lambda greater than 350 nm ATP synthesis was obtained similar to the proteinless model riboflavin + ADP + Pinorg. In this model endogenous flavin was suggested to serve as a photosensitizer, its photoexcitement being a model of dark energization of F1-ATPase in oxidative phosphorylation.  相似文献   

2.
The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation.  相似文献   

3.
The accessibility of F1-ATPase from Micrococcus lysodeikticus in solution and in the membrane for the specific water-soluble NH2-group reagent, 2,4,6-trinitrobenzosulfonate (TNBS), was studied. Incubation of the soluble factor F1 with 50 mM TNBS pH 8.3 results in incorporation of 58.6 +/- 4.4 trinitrophenyl residues per mole of enzyme. At the same time F1-ATPase isolated from TNBS-pretreated membranes contains 27.2 +/- 2.0 TNP-residues per mole of enzyme. It is assumed that the different accessibility of F1-ATPase for TNBS in solution and in the membrane is due to incorporation of F1-ATPase into the membrane. Study of membrane F1-ATPase interaction with the radioactive lipid-soluble photoreactive label, 12-0-(azidoformyl) stearic acid methyl ester demonstrated that F1-ATPase does not immediately interact with the lipid phase of the membrane. It is suggested that membrane F1-ATPase may be enveloped by hydrophobic proteins.  相似文献   

4.
 本文利用动力学方法研究了乙醇对F_1-ATP酶和H~(+)-ATP酶复合体的抑制与其结合核苷酸位点状态的关系,结果表明天然情况下乙醇对F_1呈现反竞争性抑制类型,对H~(+)-ATP酶呈现非竞争性抑制类型,且乙醇对F_1和H~(+)-ATP酶的抑制与核苷酸结合位点的构象密切相关。游离状态下和膜结合状态下的F_1在部分结合的核苷酸被洗脱前后动力学行为的不同,反映了二种状态下的F_1具有不同的构象,且F_0和膜脂对F_1起着一定的调控作用。  相似文献   

5.
Four mutant strains of Escherichia coli which lack membrane-bound adenosine triphosphatase activity were shown by genetic-complementation tests to carry mutations in the uncA gene. A soluble inactive F1-ATPase aggregate was released from the membranes of three of the uncA mutant strains by low-ionic-strength washing, and purified by procedures developed for the purification of F1-ATPase from normal strains. Analysis of the subunit structure by two-dimensional gel electrophoresis indicated that the F1-ATPase in strains carrying the uncA401 or uncA453 alleles had a subunit structure indistinguishable from normal F1-ATPase. In contrast, the F1-ATPase from the strain carrying the uncA447 allele contained an alpha-subunit of normal molecular weight, but abnormal net charge. Membranes from strains carrying the uncA450 allele did not have F1-ATPase aggregates that could be solubilized by low-ionic-strength washing. However, a partial dipolid strain carrying both the uncA+ and uncA450 alleles formed an active F1-ATPase aggregate which could be solubilized by low-ionic-strength washing of the membranes and which contained two types of alpha-subunit, one of which was normal and the other had abnormal net charge. It is concluded that the uncA gene codes for the alpha-subunit of the adenosine triphosphatase.  相似文献   

6.
7.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

8.
Mitochondrial F1-ATPase shows a break in the Arrhenius plot with an increase of the activation energy below 17 degrees C, this may imply that the F1-ATPase undergoes a conformational change at this temperature. Further, a structural change of the F1-ATPase is indicated by analysis of the intrinsic fluorescence at 307 nm between 33 and 11 degrees C and also by evaluation of the circular dichroism spectra of the enzyme at temperatures below and above the temperature corresponding to the discontinuity of the Arrhenius plot. It is therefore suggested that F1-ATPase exists in two temperature dependent conformational states to which different catalytic properties may be assigned.  相似文献   

9.
F1-ATPase of Micrococcus lysodeikticus is not a glycoprotein   总被引:2,自引:0,他引:2  
It has been claimed (Andreu, JM, Warth, R. and Mu?oz, E. (1978) FEBS Letter, 86, 1-5) that the F1-ATPase of Micrococcus lysodeikticus is a glycoprotein containing mannose and glucose as the principal sugars. Even after extensive purification of M. lysodeikticus F1-ATPase by DEAE-Sephadex A25 chromatography, carbohydrate contents varying from 2.7 to 10.8% have been found. Concanavalin A-reactive components corresponding to the succinylated lipomannan have been detected and separated from the ATPase in purified F1 preparations by immunoelectrophoresis (rocket and two-dimensional) through agarose gels containing concanavalin A. Passage of the purified F1-ATPase through concanavalin A-Sepharose 4B columns removed the carbohydrate component(s) without loss of the specific activity of the ATPase. Mannose was the only sugar detectable by gas-liquid chromatography of the F1-ATPase before Con A-Sepharose 4B chromatography and it was completely eliminated after chromatography. No qualitative or quantitative changes in the subunit (alpha, beta, gamma, delta and epsilon) profiles were detectable when the sodium dodecyl sulfate polyacrylamide gels were scanned by densitometry of F1-ATPase before and after Con A-Sepharose 4B chromatography. We conclude that there is no evidence of carbohydrate covalently linked to this F1-ATPase and that this membrane protein is not a glycoprotein. The presence of carbohydrate is attributable to contamination with lipomannan.  相似文献   

10.
To facilitate study of the role of the beta-subunit in the membrane-bound proton-translocating ATPase of Escherichia coli, we identified mutant strains from which an F1-ATPase containing abnormal beta-subunits can be purified. Seventeen strains of E. coli, characterized by genetic complementation tests as carrying mutations in the uncD gene (which codes for the beta-subunit), were studied. The majority of these strains (11) were judged to be not useful, as their membranes lacked ATPase activity, and were either proton-permeable as prepared or remained proton-impermeable after washing with buffer of low ionic strength. A further two strains were of a type not hitherto reported, in that their membranes had ATPase activity, were proton-impermeable as prepared, and were not rendered proton-permeable by washing in buffer of low ionic strength. Presumably in these two strains F1-ATPase is not released in soluble form by this procedure. F1-ATPase of normal molecular size were purified from strains AN1340 (uncD478), AN937 (uncD430), AN938 (uncD431) and AN1543 (uncD484). F1-ATPase from strain AN1340 (uncD478) had 15% of normal specific Mg-dependent ATPase activity and 22% of normal ATP-synthesis activity. The F1-ATPase preparations from strains AN937, AN938 and AN1543 had respectively 1.7%, 1.8% and 0.2% of normal specific Mg-dependent ATPase activity, and each of these preparations had very low ATP-synthesis activity. The yield of F1-ATPase from the four strains described was almost twice that obtained from a normal haploid strain. The kinetics of Ca-dependent ATPase activity were unusual in each of the four F1-ATPase preparations. It is likely that these four mutant uncD F1-ATPase preparations will prove valuable for further experimental study of the F1-ATPase catalytic mechanism.  相似文献   

11.
Nucleotide-depleted mitochondrial F1-ATPase binds 3'-(2')-O-(2-nitro-4-azidobenzoyl)-derivatives of ATP (NAB-ATP) and GTP (NAB-GTP) when these nucleotide analogues are added to the enzyme in equimolar quantities in the presence of Mg2+ (uni-site catalysis conditions). The binding of NAB-ATP is accompanied by its hydrolysis and inorganic phosphate dissociation from the enzyme; NAB-ADP remains bound to F1-ATPase. The F1-ATPase X NAB-ADP complex has no ATPase activity and its reactivation in the presence of an excess of ATP is accompanied by NAB-ADP release. The illumination of the F1-ATPase complexes with NAB-ADP or NAB-GDP leads to the covalent binding of one nucleotide analogue molecule to the enzyme and to the irreversible inactivation of F1-ATPase. It follows from the results obtained that the modification of just one of the F1-ATPase catalytic sites is sufficient to complete the inhibition of ATPase activity.  相似文献   

12.
Jeffers CE  Tu SC 《Biochemistry》2001,40(6):1749-1754
It is believed that the reduced FMN substrate required by luciferase from luminous bacteria is provided in vivo by NAD(P)H-FMN oxidoreductases (flavin reductases). Our earlier kinetic study indicates a direct flavin cofactor transfer from Vibrio harveyi NADPH-preferring flavin reductase P (FRP(H)) to the luciferase (L(H)) from the same bacterium in the in vitro coupled luminescence reaction. Kinetic studies were carried out in this work to characterize coupled luminescence reactions using FRP(H) and the Vibrio fischeri NAD(P)H-utilizing flavin reductase G (FRG(F)) in combination with L(H) or luciferase from V. fischeri (L(F)). Comparisons of K(m) values of reductases for flavin and pyridine nucleotide substrates in single-enzyme and luciferase-coupled assays indicate a direct transfer of reduced flavin, in contrast to free diffusion, from reductase to luciferase by all enzyme couples tested. Kinetic mechanisms were determined for the FRG(F)-L(F) and FRP(H)-L(F) coupled reactions. For these two and the FRG(F)-L(H) coupled reactions, patterns of FMN inhibition and effects of replacement of the FMN cofactor of FRP(H) and FRG(F) by 2-thioFMN were also characterized. Similar to the FRP(H)-L(H) couple, direct cofactor transfer was detected for FRG(F)-L(F) and FRP(H)-L(F). In contrast, despite the structural similarities between FRG(F) and FRP(H) and between L(F) and L(H), direct flavin product transfer was observed for the FRG(F)-L(H) couple. The mechanism of reduced flavin transfer appears to be delicately controlled by both flavin reductase and luciferase in the couple rather than unilaterally by either enzyme species.  相似文献   

13.
I A Kozlov  E N Vulfson 《FEBS letters》1985,182(2):425-428
The interaction of inorganic phosphate with native and nucleotide-depleted F1-ATPase was studied. F1-ATPase depleted of tightly bound nucleotides loses the ability to bind inorganic phosphate. The addition of ATP, ADP, GTP and GDP but not AMP, restores the phosphate binding. The nucleotides affecting the phosphate binding to F1-ATPase are located at the catalytic (exchangeable) site of the enzyme. The phosphate is thought to bind to the same catalytic site where the nucleotide is already bound. It is thought that ADP is the first substrate to bind to F1-ATPase in the ATP synthesis reaction.  相似文献   

14.
F1-ATPase is inactivated by entrapment of MgADP in catalytic sites and reactivated by MgATP or P(i). Here, using a mutant alpha(3)beta(3)gamma complex of thermophilic F(1)-ATPase (alpha W463F/beta Y341W) and monitoring nucleotide binding by fluorescence quenching of an introduced tryptophan, we found that P(i) interfered with the binding of MgATP to F(1)-ATPase, but binding of MgADP was interfered with to a lesser extent. Hydrolysis of MgATP by F(1)-ATPase during the experiments did not obscure the interpretation because another mutant, which was able to bind nucleotide but not hydrolyse ATP (alpha W463F/beta E190Q/beta Y341W), also gave the same results. The half-maximal concentrations of P(i) that suppressed the MgADP-inhibited form and interfered with MgATP binding were both approximately 20 mm. It is likely that the presence of P(i) at a catalytic site shifts the equilibrium from the MgADP-inhibited form to the enzyme-MgADP-P(i) complex, an active intermediate in the catalytic cycle.  相似文献   

15.
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase.  相似文献   

16.
S100A1, a Ca(2+)-sensing protein of the EF-hand family that is expressed predominantly in cardiac muscle, plays a pivotal role in cardiac contractility in vitro and in vivo. It has recently been demonstrated that by restoring Ca(2+) homeostasis, S100A1 was able to rescue contractile dysfunction in failing rat hearts. Myocardial contractility is regulated not only by Ca(2+) homeostasis but also by energy metabolism, in particular the production of ATP. Here, we report a novel interaction of S100A1 with mitochondrial F(1)-ATPase, which affects F(1)-ATPase activity and cellular ATP production. In particular, cardiomyocytes that overexpress S100A1 exhibited a higher ATP content than control cells, whereas knockdown of S100A1 expression decreased ATP levels. In pull-down experiments, we identified the alpha- and beta-chain of F(1)-ATPase to interact with S100A1 in a Ca(2+)-dependent manner. The interaction was confirmed by colocalization studies of S100A1 and F(1)-ATPase and the analysis of the S100A1-F(1)-ATPase complex by gel filtration chromatography. The functional impact of this association is highlighted by an S100A1-mediated increase of F(1)-ATPase activity. Consistently, ATP synthase activity is reduced in cardiomyocytes from S100A1 knockout mice. Our data indicate that S100A1 might play a key role in cardiac energy metabolism.  相似文献   

17.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

18.
The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributed to excessive immune responses. Recently, lipoproteins from mycoplasmas have been reported to induce NF-kappaB activation. In this study, we examined the ability of lipoproteins from M. pneumoniae to activate NF-kappaB, and the active component responsible for the NF-kappaB activation was identified. Lipid-associated membrane proteins from M. pneumoniae were found to induce NF-kappaB through TLR 2 in a human monocytic cell line, THP-1. The active component of the Lipid-associated membrane proteins was a subunit b of F0F1-type ATPase (F0F1-ATPase). The F0F1-ATPase is assumed to contain two palmitic acids. The activation of NF-kappaB by the F0F1-ATPase was inhibited by a dominant negative construct of TLR1 and TLR6. These results indicate that the activation of NF-kappaB by F0F1-ATPase is dependent on TLR1, TLR2, and TLR6. The activity of the F0F1-ATPase was decreased with pretreatment of lipoprotein lipase but not protease, indicating that the lipid moiety of the F0F1-ATPase was important for the NF-kappaB activation. Thus, a dipalmitoylated lipoprotein from M. pneumoniae was found to activate NF-kappaB through TLR1, TLR2, and TLR6.  相似文献   

19.
1. F1-ATPase has been extracted by the diphosphatidylglycerol procedure from mitochondrial ATPase complexes that differ in ATPase activity, cold stability, ATPase inhibitor and magnesium content. 2. The ATPase activity of the isolated enzymes was dependent upon the activity of the original particles. In this respect, F1-ATPase extracted from submitochondrial particles prepared in ammonia (pH 9.2) and filtered through Sephadex G-50 was comparable to the enzyme purified by conventional procedures (Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336--1344), whereas F1-ATPase extracted from submitochondrial particles prepared in the presence of magnesium and ATP at neutral pH was similar to factor A (Andreoli, T.E., Lam, K.W. and Sanadi, D.R. (1965) J. Biol. Chem. 240, 2644--2653). 3. No systematic relationship has been found in these F1-ATPase preparations between their ATPase inhibitor content and ATPase activity. Rather, a relationship has been observed between this activity and the efficiency of the ATPase inhibitor-F1-ATPase association within the membrane. 4. It is concluded that the ATPase activity of isolated F1-ATPase reflects the properties of original ATPase complex provided a rapid and not denaturing procedure of isolation is employed.  相似文献   

20.
H+-translocating, Mg2+-ATPase was solubilized from vacuolar membranes of Saccharomyces cerevisiae with the zwitterionic detergent N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and purified by glycerol density gradient centrifugation. Partially purified vacuolar membrane H+-ATPase, which had a specific activity of 18 units/mg of protein, was separated almost completely from acid phosphatase and alkaline phosphatase. The purified enzyme required phospholipids for maximal activity and hydrolyzed ATP, GTP, UTP, and CTP, with this order of preference. Its Km value for Mg2+-ATP was determined to be 0.21 mM and its optimal pH was 6.9. ADP inhibited the enzyme activity competitively, with a Ki value of 0.31 mM. The activity of purified ATPase was strongly inhibited by N,N'-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, tributyltin, 7-chloro-4-nitrobenzoxazole, diethylstilbestrol, and quercetin, but was not affected by oligomycin, sodium azide, sodium vanadate, or miconazole. It was not inhibited at all by antiserum against mitochondrial F1-ATPase or mitochondrial F1-ATPase inhibitor protein. These results indicated that vacuolar membrane H+-ATPase is different from either yeast plasma membrane H+-ATPase or mitochondrial F1-ATPase. The vacuolar membrane H+-ATPase was found to be composed of two major polypeptides a and b of Mr = 89,000 and 64,000, respectively, and a N,N'-dicyclohexylcarbodiimide binding polypeptide c of Mr = 19,500, whose polypeptide composition was also different from those of either plasma membrane H+-ATPase or mitochondrial F1-ATPase of S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号