首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of population relationships in the Mediterranean region is crucial to the reconstruction of recent human evolution. Andalusia, the most southern region of Spain, has been continuously and densely occupied since ancient times and has a rich history of contacts with many different Mediterranean populations. Thus, to understand the Mediterranean peopling process, investigators should analyze the population relationships between the Iberian peninsula and northern Africa based on an assessment of genetic diversity that takes Andalusia into consideration. The aim of this study was to address the extent of genetic variation in the Iberian peninsula between its geographic extremes (Huelva and the Basque area) and to explain the intensity of the phylogenetic relationships between Andalusians and other neighboring populations, such as those from North Africa. We present, for the first time, results on allotype markers (GM and KM) of human immunoglobulins in the Andalusian population from Huelva. The most frequent GM haplotypes in Andalusia correspond to those that are also the most common in Europe. A sub-Saharan haplotype was found at a relatively high frequency compared to other Iberian samples, and a North Asian marker did not reach polymorphic frequencies in the study sample. A hierarchical cluster analysis based on the first two principal components (94.1% of the total genetic variance) revealed an interesting geographic structure for the 49 populations selected from the literature. The Huelva sample showed a central position in the multivariate space--despite being geographically located at one of the extremes of the Mediterranean basin--and clustered with most Western European populations. Western Europe and Eastern Europe (the latter group paradoxically including Italy and the major islands of the western Mediterranean) were differentiated. North African populations were grouped in two clusters that did not separate either Arabs and Berbers or their present-day countries. Analysis of immunoglobulin allotype markers shows that gene flow among human populations should generally be interpreted in terms of complex patterns, with the observed frequencies being the consequence of the entire genetic and demographic history of the population. Single historical events rarely determine gene frequencies in large human populations. Analysis of the GM system has shown that the Andalusian population from Huelva, as a result of its complex history, is not simply an outstanding part of the Mediterranean world but rather the genetic center of gravity of that world.  相似文献   

2.
Sequence data derived from two mitochondrial markers, 16S rRNA and COI genes, were used to infer the evolutionary history of 47 insular and mainland populations covering most of the distributional range of the northeastern Mediterranean scorpion species Mesobuthus gibbosus. Based on the estimated divergence times of Mesobuthus lineages, the temporal frame of the genus differentiation in the northeastern Mediterranean region is placed in middle Miocene (15 million years ago). The biogeographic affinities of M. gibbosus populations point towards a mainly vicariant pattern of differentiation of the species which is consistent with the geological events that transformed the Aegean region during the period from 12 to 5 million years ago. M. gibbosus is an old northeastern Mediterranean species that has retained valuable bits of genetic information, reflecting some of the oldest vicariant events that have occurred in the area. Most importantly, the history witnessed by M. gibbosus has not been obscured by more recent palaeoevents of the region. Therefore, the case of M. gibbosus is in favour of a taxon-oriented 'perception' of the natural history of a given area.  相似文献   

3.
The olive fly, Bactrocera oleae, is the major pest of olives in most commercial olive-growing regions worldwide. The species is abundant in the Mediterranean basin and has been introduced recently into California and Mexico, creating problems for quarantine protection and international trade. Here, we use nuclear microsatellite markers and mitochondrial sequences to examine the history of olive fly range expansion and colonization. Sampled populations span the current distribution of the olive fly worldwide, including South and Central Africa, Pakistan, Mediterranean Europe and Middle East, California, and Mexico. The Pakistani populations appear to be genetically well differentiated from the remaining populations, though rooting the origins of the species is problematic. Genetic similarity and assignment tests cluster the remaining populations into two genetic groups--Africa and a group including the Mediterranean basin and the American region. That Africa, and not the Mediterranean, is the origin of flies infesting cultivated olive is supported by the significantly greater genetic diversity at microsatellite loci in Africa relative to the Mediterranean area. The results also indicate that the recent invasion of olive flies in the American region most likely originated from the Mediterranean area.  相似文献   

4.
Most modern species of Sporolithon live in tropical and subtropical areas and only one species of the genus, S. ptychoides, occurs in the Mediterranean Sea. The scarce present-day populations of Sporolithon in the Mediterranean region are relics of a long history of the genus in this area since the Early Cretaceous. Analysis of data from the palaeontological literature, combined with the study of both fossil samples and Recent ones collected from Italy and Spain, shows that during the Miocene variations in the number of Sporolithon species in the Mediterranean region parallel changes in global temperature. After a maximum species richness in the Langhian (early Mid Miocene), coincident with the Miocene climatic optimum, the number of species decreased to just two before the Messinian Salinity Crisis. This marked decline follows the global cooling event that began at around 14 Ma. The closure of the connections of the Mediterranean region with the Indian Ocean during the Langhian left Mediterranean Sporolithon populations isolated from the main dispersal area of the genus. After the Messinian desiccation, a single species, S. ptychoides, re-invaded the Mediterranean Basin during the Early Pliocene and continues to inhabit this temperate sea today. The Atlantic Ocean is the most probable source of the re-invading Sporolithon plants.  相似文献   

5.
Cysts of the brine shrimp Artemia franciscana are harvested from the Great Salt Lake (GSL) and San Francisco Bay (SFB) saltworks in the USA, and marketed worldwide to provide live food for aquaculture. This species has become invasive across several countries. We investigated (1) if the introduced populations in the Mediterranean region could have originated from these USA populations, (2) how the genetic diversity of Mediterranean compares to that at GSL and SFB, and (3) if genetic patterns in the Mediterranean can shed light on colonization routes. We sequenced a fragment of the cytochrome c oxidase subunit I and screened microsatellites loci from Mediterranean populations and the two putative USA sources. Haplotypes from Mediterranean populations were identical or closely related to those from SFB and GSL, and not related to other available American populations. Microsatellite analyses showed a reduced population diversity for most Mediterranean populations suggesting bottleneck effects, but few populations were showing similar or higher genetic diversity than native ones, which are likely to be admixed from both GSL and SFB because of multiple introductions. Results suggest natural dispersal, potentially via flamingos, between two Spanish populations. Our analyses show that all invaded populations could have originated from those commercialized USA populations.  相似文献   

6.
The Hordeum marinum species group consists of two annual grasses of western Eurasian saline meadows or marshes. The two grasses split in the Quaternary about two million years ago. Hordeum marinum and the diploid of Hordeum gussoneanum (2x) co-occur throughout the Mediterranean basin, while the autotetraploid cytotype of H. gussoneanum (4x) overlaps with its diploid progenitor geographically only in the utmost Eastern Mediterranean, extending from there eastwards into Asia. Using chloroplast sequences of the trnL-F region, six newly developed chloroplast microsatellite loci, ecological predictive models based on climate data, and the present geographical distribution of the two species we analysed differentiation processes in the H. marinum group. The chloroplast data indicated clear differences in the history of both species. For H. marinum we found a subdivision between genetically variable populations from the Iberian Peninsula and the more uniform populations from the remaining Mediterranean. As an explanation, we assume Pleistocene fragmentation of an earlier widespread population and survival in an Iberian and a Central Mediterranean glacial refuge. Chloroplast variation was completely absent within the cytotypes of H. gussoneanum, indicating a severe and recent genetic bottleneck. Due to this lack of chloroplast variation only the combination of ecological habitat modelling with molecular data analyses allowed conclusions about the history of this taxon. The distribution areas of the two cytotypes of H. gussoneanum overlap today in parts of Turkey, indicating an area with similar climate conditions during polyploid formation. However, after its origin the polyploid cytotype underwent a pronounced ecological shift, compared to its diploid progenitor, allowing it to colonize mountainous inland habitats between the Mediterranean basin and Afghanistan. The extant sympatric occurrence of H. marinum and H. gussoneanum 2x in the Mediterranean region is interpreted as a result of secondary contact after fast Holocene range expansion out of different ice age refugia.  相似文献   

7.
Abstract The Mediterranean red coral (Corallium rubrum, L. 1758) is a slow-growing longevous gorgonian that produces a red calcium carbonate skeleton, which is in high demand by the jewellery industry. Its long history of intensive commercial harvesting has resulted in a well-documented decline of its stocks throughout the Mediterranean, becoming especially apparent during the last two decades. Based on the extensive ecological data from the Costa Brava (NE Spain) stocks, this study reviews, for the first time, socioeconomic aspects and the impact of current fishing practices on the red coral population structure and reproductive biology. A comparison of the intensively harvested populations in shallow water with that of the infrequently harvested ones in deep water, along with a population in a marine reserve as well, reveals that 98% of all shallow water colonies show a juvenile size and branching pattern as a result of harvesting. Recent data on the reproductive biology of the species show that 91% of the colonies in shallow water populations (<60 m depth) are not 100% sexually mature. These populations are clearly at the limit of their recoverability potential. The maximum sustainable yield (estimated using the Beverton-Holt model) is reached at an age of first capture of 98 years, although the current regulations allow harvesting of approximately 11-year-old colonies (corresponding to a basal diameter of 7 mm). The presented data reveal how this renewable resource is being exploited in a clearly non-sustainable and inefficient way, changing significantly the underwater landscape of the Mediterranean coast. The review of all available data suggests that the shallow water stocks are depleted. Furthermore, recent trends in poaching of juvenile colonies and mass mortality events threaten the survival of the shallow water populations. A ban on reconstituted coral from the market appears to be the only option to control this form of poaching.  相似文献   

8.
The olive fly (Bactrocera oleae) is the most important olive tree (Olea europaea) pest. In the Mediterranean basin, where 98?% of its main hosts are concentrated, it causes major agricultural losses, due to its negative effect on production and quality of both olive and olive oil. Previous phylogeographic analyses have established that Mediterranean olive fly populations are distinct from other Old World populations, but did not agree on the specific population substructure within this region. In order to achieve a higher resolution of the diversity of olive fly populations, particularly in Central and Western Mediterranean (home to 70?% of the world production), we comparatively analyzed a set of samples from Portugal in the context of published mitochondrial sequences across the species' worldwide range. Strong evidence of population substructure was found in the Central and Western Mediterranean area, with two clearly separate phylogenetic branches. Together with previously published data, our results strongly support the existence of at least three distinct Mediterranean populations of the olive fly, raise the possibility of additional regional substructure and suggest specific avenues for future research. This knowledge can be instrumental in the development of better management and control strategies for a major pest of Mediterranean agriculture.  相似文献   

9.
A phylogeny of the Cambrian solenopleuropsine trilobites is constructed to evaluate the importance of differential speciation, extinction and developmental constraints in the evolutionary history of the clade. The transformation of the Pardailhania–Solenopleuropsis ( Manublesia )– Solenopleuropsis ( Solenopleuropsis ) lineages occurred during the mid Caesaraugustian–early Languedocian interval, with all measured morphological variables exhibiting continuous and gradual changes. Several evolutionary trends show tendencies towards an increase in tuberculation and its complexity on the anterior part of the cephalon. A mid Caesaraugustian anagenetic tendency is related to the influence of constant environmental conditions, whereas a late Caesaraugustian–early Languedocian cladogenetic tendency seems to have been an adaptative response to unstable environments. The Solenopleuropsinae clade has a well-preserved continuous fossil record over its full biogeographical range in the Mediterranean region. The sympatric evolution in centrally located populations (Mediterranean area) follows the model of phyletic gradualism, whilst a peripheral population in Avalonia gave rise (by allopatric speciation) to a distinct species, characterized by a variation in the relative size of the palpebral lobes, which may be evidence of a parallel evolution in the trends of ornamentation.  相似文献   

10.
Aim The Mediterranean region is often regarded as a crossroads where species of various origins meet. However, the biogeographical relationships between this region and contiguous Saharan, Macaronesian and Irano‐Turanian regions have not been investigated in detail. The aim of this study was to characterize the phylogeography of the circum‐Mediterranean species Myrtus communis and to investigate the origin of isolated central Saharan populations of Myrtus nivellei. Location The distribution ranges of M. communis from Macaronesia to the Irano‐Turanian region (173 sampled populations) and of M. nivellei in the mountains (Hoggar, Tassili n’Ajjer, Immidir, Tibesti) of the central Sahara (23 populations). Methods Nuclear ribosomal DNA (nrDNA) sequences of Myrtaceae were used to root the phylogeny of Myrtus, and to date its crown node, according to a detailed review of the palaeobotanical records used for multiple fossil calibration. Chloroplast DNA (cpDNA) sequences were analysed through the determination of genetic diversity indices and by statistical phylogeography. Results Both cpDNA and nrDNA markers indicated east–west genetic differentiation within M. communis. During the late Miocene, a key vicariance event affected the previous circum‐Mediterranean distribution of Myrtus, leading to the isolation of eastern populations. During the late Miocene or early Pliocene, two clades diverged: one is now scattered in the Mediterranean Basin and adjacent regions, whereas the other evolved in the western Mediterranean region. The differentiation of lineages during the Plio‐Pleistocene occurred mainly in the western part of the Mediterranean Basin, which has been at the origin of migrations towards Macaronesian islands and Saharan mountains. This is one of the first plant phylogeographical studies to report migrations from the Mediterranean to the Sahara. Main conclusions The genus Myrtus has persisted in the Mediterranean region since at least the Neogene and its biogeography reflects the cumulation of the species’ responses to successive palaeoenvironmental changes. The current distribution of the genus Myrtus in the Mediterranean Basin and in isolated areas, such as the Macaronesian islands and Saharan mountains, can be explained by the striking ability of this plant not only to persist locally in various refugia, but also to migrate.  相似文献   

11.
Sequence data derived from three mitochondrial markers (cytochrome b, 16S rRNA and 12S rRNA genes) were used to infer the evolutionary history of several insular and mainland populations of the Greek legless skink (Ophiomorus punctatissimus), covering most of its distributional range. All phylogenetic analyses produced topologically identical trees that revealed a well-resolved phylogeny. These trees support two O. punctatissimus clades, which are geographically separated (west and east of the mid-Aegean trench). The assumption of a clock-like evolution could not be rejected, and thus a local clock was calibrated for the O. punctatissimus lineages. The non-overlapping geographic distributions of the major clades suggest a spatial and temporal sequence of diversification that coincides with paleogeographic separations during the geological history of the Aegean region. It seems that O. punctatissimus is an old eastern Mediterranean species that has been differentiating in this region at least from middle Miocene. It is possible that the ancestral form of O. punctatissimus invaded the Aegean region from Anatolia before the complete formation of the mid-Aegean trench, when the Aegean was still a uniform landmass, while other vicariant events have led to its present distribution.  相似文献   

12.
The increase in gene diversity from high to low latitudes is a widely recognized biogeographical pattern, often shaped by differential effects of Late Quaternary climatic changes. Here, we evaluate the effects of Pleistocene climatic changes from northern Europe to North Africa and their implications on the population differentiation of the widespread, short‐lived herb Plantago coronopus. We used amplified fragment length polymorphism to investigate the population structure and phylogeography of P. coronopus in 273 individuals from 29 populations covering its complete latitudinal range. Although Bayesian clustering, principal coordinates analysis and a consensus UPGMA tree were not fully congruent, two well‐supported clades, associated with distinct latitudinal zones (northern Europe and the Mediterranean region), were revealed as a general pattern. Moreover, populations from the western Atlantic edge and, to a lesser extent, the central Mediterranean region exhibited signs of admixture, suggesting secondary contacts. The admixed populations in the western Atlantic and central Mediterranean are geographically intermediate between the northern and southern lineages. The northernmost lineage exhibited low genetic diversity, a clear sign of a recent colonization. In contrast, populations from the southernmost part of the range showed the highest level of genetic diversity, indicating possible refugia for the species during the Quaternary ice ages. Overall, our study allows spatial structure of the genetic variation of a widespread herb across its latitudinal range to be disentangled and provides insights into how past climatic history influences present genetic patterns. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 618–634.  相似文献   

13.
The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.  相似文献   

14.
Aim The circum‐Mediterranean region is one of the most complex regions of the Earth in terms of geography and natural history. The Old World species of the beetle subtribe Anisopliina (Scarabaeidae) feed almost exclusively on the pollen of grasses (Poaceae). Within this group, the ‘anisopliine clade’ forms a monophyletic group distributed mainly in the circum‐Mediterranean region. Here, we reconstruct the biogeographical history of the anisopliine beetles in relation to the diversification of grasses, and compare this reconstruction with previous hypotheses concerning the evolution of the Mediterranean fauna and with palaeogeographical accounts of the history of this region. Location The Mediterranean region, including North Africa, the Western Mediterranean, Balkans–Anatolia, Middle East and Caucasus. Methods Dispersal–vicariance analysis (diva ) was used to reconstruct ancestral distributions based on the morphological phylogeny and to infer the biogeographical processes that have shaped the observed distribution patterns. To account for phylogenetic uncertainty in the biogeographical reconstruction, we ran alternative ancestral distributions derived by diva over a sample of trees obtained by bootstrapping the original data set, reflecting the relative confidence of the ancestral areas on the various clades in the phylogeny. Results The Eastern Mediterranean region and the Caucasus are inferred as the ancestral area of most of the anisopliine lineages. The Eastern Mediterranean region is also reconstructed as the source area of the majority of dispersal events, in particular towards North Africa and the Western Mediterranean. The Iberian Peninsula is inferred as part of the ancestral distribution of the anisopliine clade but also as the setting of several independent colonization events via both the North African platform (Anthoplia) and a European dispersal route (Anisoplia). Main conclusions Our results confirm the role played by the Eastern Mediterranean as an evolutionary cradle of diversity for Mediterranean lineages. This can be explained by a recent and intense orogenic activity that might have promoted isolation and allopatric speciation within lineages. Both the Anomalini fossil record and the close association of anisopliine beetles with grasses suggest that the anisopliine clade originated in the Late Tertiary and that its spatial and temporal evolution within the Mediterranean Basin coincided with that of its major food source, the Mediterranean Poaceae.  相似文献   

15.
Moretti  Marco  Caretti  Paolo  Bricalli  Anya  Andrello  Marco 《Plant Ecology》2020,221(5):361-374

Range marginal populations are often perceived to have lower conservation value compared to those in the core area. The allocation of resources to maintain peripheral populations is therefore often questioned. The sage-leaved rockrose (Cistus salviifolius L.) is a self-incompatible and obligate seeder widely distributed in the Mediterranean area but rare and patchily distributed in Switzerland at its range margin on the southern slopes of the Alps. Here, we combined analysis of genetic diversity with pollinator surveys and field studies of reproductive ecology to compare peripheral Cistus populations in the Alps with range central populations in the Mediterranean. Our results showed no differences in genetic diversity between peripheral and central populations and between fragmented and connected ones at its range margin in the Alps. Although the fragmented populations were visited by more abundant and species richer pollinators (bees and wasps), they showed lower number of seeds and higher self-compatibility compared to the connected ones, which excludes the pollination limitation hypothesis. Overall, our study highlights that peripheral populations of C. salviifolius in the Alps are likely to contribute to maintain genetic diversity, while showing variation in reproductive ecology, and are therefore important for the conservation of this species.

  相似文献   

16.
Numerous planktonic species have disjunct distribution patterns in the world's oceans. However, it is unclear whether these are truly unconnected by gene flow, or whether they are composed of morphologically cryptic species. The marine planktonic chaetognath Sagitta setosa Müller has a discontinuous geographic distribution over the continental shelf in the northeastern Atlantic, Mediterranean Sea, and Black Sea. Morphological variation between these populations has been described, but overlaps and is therefore unsuitable to determine the degree of isolation between populations. To test whether disjunct populations are also genetically disjunct, we sequenced a 504-bp fragment of mitochondrial DNA comprising the cytochrome oxidase II region of 86 individuals. Sequences were highly variable; each represented a different haplotype. Within S. setosa, sequence divergence ranged from 0.2 to 8.1% and strong phylogeographic structure was found, with four main groups corresponding to the northeastern Atlantic, Mediterranean Sea (including Ligurian Sea, Tyrrhenian Sea and Gulf of Gabes), Adriatic Sea, and Black Sea. Two of these (Atlantic and Black Sea) were resolved as monophyletic clades, thus gene flow between disjunct populations of S. setosa has been extremely limited and lineage sorting has taken place. The deepest divergence was between Atlantic and Mediterranean/Black Sea populations followed by a split between Mediterranean and Black Sea populations. The Mediterranean/Black Sea clade comprised three groups, with the Adriatic Sea as the most likely sister clade of the Black Sea. These data are consistent with a colonization of the Black Sea from the Mediterranean. Furthermore, a possible cryptic species was found in the Black Sea with 23.1% sequence divergence from S. setosa. Two possibilities for the evolutionary origin of this species are proposed, namely, that it represents a relict species from the ancient Paratethys, or that it represents another chaetognath species that colonized the Black Sea more recently. Even though the exact timing of disjunction of S. setosa populations remains unclear, on the basis of the geological and paleoclimatic history of the European basins and our estimates of net nucleotide divergence, we suggest that disjunct populations arose through vicariance resulting from the cyclical changes in temperature and sea levels during the Pleistocene. We conclude that these populations have remained disjunct, not because of limited dispersal ability, but because of the inability to maintain viable populations in suboptimal, geographically intermediate areas.  相似文献   

17.
The tephritid Bactrocera oleae (Gmelin) is a harmful pest of olive crops that cause important agricultural and economic losses in the Mediterranean area where 90% of the world olive trees are cultivated. The knowledge of the genetic diversity in insect pest species populations is critical for decisions concerning appropriate control management strategies. In the present work, the genetic variability within and among 7 populations ‐five from Spain, one from Italy and one from Tunisia‐, was assessed by sequencing 1151 bp of the COI gene. A total of 21 haplotypes were observed. The intraspecific diversity was high, particularly in the Spanish populations (haplotype and nucleotide diversity 0.84 and 0.00137, respectively). However, the genetic differentiation among the populations was low in the case of Spanish ones (Fst between 0 and 0.041), and higher –and statistically significant– when comparing with the Italian and Tunisian samples. The haplotypes distribution and the PCoA analysis show three clear groups of populations: Spanish, Italian and Tunisian. The results might indicate the length of time elapsed since B. oleae became established in the Mediterranean region, the large effective sizes expected of its populations and the high gene flow among Iberian populations. The information could be relevant for integrated control programmes coordination.  相似文献   

18.
During investigations on the parasites of Chondrillajuncea in the Mediterranean region, the rust, Puccinia chondrillina, was found to be one of the most damaging. This macrocyclic and autoecious rust which is specific to the genus Chondrilla, remains active throughout the year and attacks all stages and all parts of the plant. In the Mediterranean region the rust appears to multiply solely by the uredo-stages and the teleutospores produced at the end of the summer have no obvious role in the life-cycle of the fungus. The uredospores germinated at temperatures of 0–36 °C and were used for inoculation of Chondrilla seedlings in the greenhouse. The rust occurs from the cold continental climates of southern Siberia to the hot, Mediterranean ones of Portugal and North Africa. In many situations the rust has been found to play an important role in the reduction of C. juncea populations. Young seedlings were highly susceptible to attack and were often destroyed. Older rusted plants gave many fewer viable seeds than healthy plants and were also often unable to produce new rosettes from their roots.  相似文献   

19.
The Mediterranean Basin is a global biodiversity hotspot, hosting a number of native species belonging to families that are found almost exclusively in tropical climates. Yet, whether or not these taxa were able to survive in the Mediterranean region during the Quaternary climatic oscillations remains unknown. Focusing on the European free-tailed bat (Tadarida teniotis), we aimed to (a) identify potential ancient populations and glacial refugia; (b) determine the post-glacial colonization routes across the Mediterranean; and (c) evaluate current population structure and demography. Mitochondrial and nuclear markers were used to understand T. teniotis evolutionary and demographic history. We show that T. teniotis is likely restricted to the Western Palearctic, with mitochondrial phylogeny suggesting a split between an Anatolian/Middle East clade and a European clade. Nuclear data pointed to three genetic populations, one of which is an isolated and highly differentiated group in the Canary Islands, another distributed across Iberia, Morocco, and France, and a third stretching from Italy to the east, with admixture following a pattern of isolation by distance. Evolutionary and demographic reconstruction supports a pre-Last Glacial Maximum (LGM) colonization of Italy and the Anatolian/Middle East, while the remaining populations were colonized from Italy after the Younger Dryas. We also found support for demographic expansion following the Iberian colonization. The results show that during the LGM T. teniotis persisted in Mediterranean refugia and has subsequently expanded to its current circum-Mediterranean range. Our findings raise questions regarding the physiological and ecological traits that enabled species with tropical affinities to survive in colder climates.  相似文献   

20.
The geology and climate of the western Mediterranean area were strongly modified during the Late Tertiary and the Quaternary. These geological and climatic events are thought to have induced changes in the population histories of plants in the Iberian Peninsula. However, fine-scale genetic spatial architecture across western Mediterranean steppe plant refugia has rarely been investigated. A population genetic analysis of amplified fragment length polymorphism variation was conducted on present-day, relict populations of Ferula loscosii (Apiaceae). This species exhibits high individual/population numbers in the middle Ebro river valley and, according to the hypothesis of an abundant-centre distribution, these northern populations might represent a long-standing/ancestral distribution centre. However, our results suggest that the decimated southern and central Iberian populations are more variable and structured than the northeastern ones, representing the likely vestiges of an ancestral distribution centre of the species. Phylogeographical analysis suggests that F. loscosii likely originated in southern Spain and then migrated towards the central and northeastern ranges, further supporting a Late Miocene southern-bound Mediterranean migratory way for its oriental steppe ancestors. In addition, different glacial-induced conditions affected the southern and northern steppe Iberian refugia during the Quaternary. The contrasting genetic homogeneity of the Ebro valley range populations compared to the southern Iberian ones possibly reflects more severe bottlenecks and subsequent genetic drift experienced by populations of the northern Iberia refugium during the Pleistocene, followed by successful postglacial expansion from only a few founder plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号