首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Chen  P Levesque  E Pomert    R E Pollack 《Journal of virology》1987,61(11):3521-3527
pSVCT3 is a cytoplasmic-localization mutant of simian virus 40 (SV40) isolated from the SV40 adenovirus 7 hybrid virus (PARA) and cloned into plasmid PBR. The large T antigen of pSVCT3 accumulates in the cytoplasm of infected monkey cells instead of being transported to the nucleus. The sole change in CT3 large T antigen is amino acid residue 128 (Lys----Asn). Transformation of precrisis rodent cells by pSVCT3 is negligible, whereas the frequency of transformation of established rodent cell lines by pSVCT3 is comparable to that of wild-type SV40. According to the model, in which transformation of precrisis cells involves the combined oncogenic action of both nuclear and cytoplasmic gene products, we predicted that pSVCT3 would localize in the cytoplasm of human cells and would therefore at most only partially and rarely transform precrisis human cells. We have found that pSVCT3 is able to transform precrisis human cells at high frequency. Furthermore, pSVCT3-transformed human precrisis cells relocalized T antigen to their nuclei. The relocalization of large T antigen was not dependent on cell growth. Wild-type and pSVCT3-transformed human cell lines both have about five copies of integrated SV40 DNA. SV40 virus-specific proteins, including the 100,000-molecular-weight super large T antigen, were expressed in pSVCT3-transformed human cells. Our results suggest that molecules in precrisis human cells, but not cells of other species, are able to complement the cytoplasmic-localization defect of the CT3 mutant large T antigen.  相似文献   

2.
In simian virus 40 (SV40)-transformed cells, a tight complex is formed between the viral large T antigen (large T) and p53. It has been proposed that this complex interferes with the antiproliferative activity of p53. This notion was tested in primary rat fibroblasts by assessing the ability of SV40-mediated transformation to be spared from the inhibitory effect of wild-type (wt) p53. The data indicate that relative to transformation induced by myc plus ras, SV40-plus-ras-mediated focus formation was indeed much less suppressed by p53 plasmids. A majority of the resultant cell lines made a p53 protein with properties characteristic of a wt conformation. Furthermore, cell lines expressing stably both SV40 large T and a temperature-sensitive p53 mutant continued to proliferate at a temperature at which this p53 assumes wt-like properties and normally causes a growth arrest. Surprisingly, at least partial resistance to the growth-inhibitory effect of wt p53 was also evident when transformation was mediated by an SV40 deletion mutant, encoding a large T which does not bind p53 detectably. In addition to supporting the idea that SV40 can overcome the growth-restrictive activity of wt p53, these findings strongly suggest that at least part of this effect does not require a stable association between p53 and large T.  相似文献   

3.
We analyzed the relation of metabolic stabilization of the p53 protein during cellular transformation by simian virus 40 (SV40) to (i) expression of the transformed phenotype and (ii) expression of the large tumor antigen (large T). Analysis of SV40-tsA28-mutant-transformed rat cells (tsA28.3 cells) showed that both p53 complexed to large T and free p53 (W. Deppert and M. Haug, Mol. Cell. Biol. 6:2233-2240, 1986) were metabolically stable when the cells were cultured at 32 degrees C and expressed large T and the transformed phenotype. At the nonpermissive temperature (39 degrees C), large-T expression is shut off in these cells and they revert to the normal phenotype. In such cells, p53 was metabolically unstable, like p53 in untransformed cells. To determine whether metabolic stabilization of p53 is directly controlled by large T, we next analyzed the metabolic stability of complexed and free p53 in SV40 abortively infected normal BALB/c mouse 3T3 cells. We found that neither p53 in complex with large T nor free p53 was metabolically stable. However, both forms of p53 were stabilized in SV40-transformed cells which had been developed in parallel from SV40 abortively infected cultures. Our results indicate that neither formation of a complex of p53 with large T nor large-T expression as such is sufficient for a significant metabolic stabilization of p53. Therefore, we suggest that metabolic stabilization of p53 during cellular transformation with SV40 is mediated by a cellular process and probably is the consequence of the large-T-induced transformed phenotype.  相似文献   

4.
Cultures of established and transformed fibroblasts were less able to contract a hydrated collagen gel than normal precrisis cells. Postcrisis fibroblasts from different rodent strains and species underwent a further reduction in contraction ability and either spontaneous or simian virus 40 (SV40) transformation. Human precrisis fibroblasts contracted much more efficiently than two SV40-transformed human lines. Fibroblasts from a patient with Glanzmann's thrombasthenia were intermediate between all other human fibroblasts assayed and the SV40-transformed human lines. The absolute efficiency of contraction was dependent on temperature and serum concentration, but no conditions were found that resulted in equal efficiencies for the three types of cells. Precrisis cells were extremely sensitive to the passage procedures when assayed for collagen contraction.  相似文献   

5.
F Tiemann  J Zerrahn    W Deppert 《Journal of virology》1995,69(10):6115-6121
Metabolic stabilization of the tumor suppressor p53 is a key event in cellular transformation by simian virus 40 (SV40). Expression of the SV40 large tumor antigen (large T) is necessary but not sufficient for this process, as metabolic stabilization of p53 complexed to large T in abortively SV40-infected cells strictly depends on the cellular systems analyzed (F. Tiemann and W. Deppert, J. Virol. 68:2869-2878, 1994). Comparative analyses of various cells differing in metabolic stabilization of p53 upon abortive infection with SV40 revealed that metabolic stabilization of p53 closely correlated with expression of the SV40 small t antigen (small t) in these cells: 3T3 cells do not express small t and do not stabilize p53 upon infection with wild-type SV40. However, ectopic expression of small t in 3T3 cells provided these cells with the capacity to stabilize p53 upon SV40 infection. Conversely, precrisis mouse embryo cells express small t and mediate metabolic stabilization of p53 upon infection with wild-type SV40. Infection of these cells with an SV40 small-t deletion mutant did not lead to metabolic stabilization of p53. Small-t expression and metabolic stabilization of p53 correlated with an enhanced transformation efficiency by SV40, supporting the conclusion that at least part of the documented helper effect of small t in SV40 transformation is its ability to promote metabolic stabilization of p53 complexed to large T.  相似文献   

6.
We have analyzed in detail the phosphorylation of p53 from normal (3T3) and simian virus 40 (SV40)-transformed (SV3T3) BALB/c mouse cells and from normal (F111) and SV40-transformed [FR(wt648)] rat cells by two-dimensional tryptic peptide mapping and phosphoamino acid analyses. To accommodate the different half-lives of p53 in normal (half-life, 15 min) and transformed (half-life, 20 h) cells and possible differences in the rates of turnover of phosphate at specific sites, cells were labeled for 2 h (short-term labeling) or 18 h (long-term labeling). Depending on the labeling conditions, either close similarities or marked differences were observed in the phosphorylation patterns of p53 from normal and transformed cells. After the 2-h labeling, the phosphorylation patterns of p53 from normal and transformed mouse cells were quite similar. In contrast, p53 from normal and transformed rat cells exhibited dramatic quantitative and qualitative differences under these labeling conditions. The reverse was found after an 18-h label leading to steady-state phosphorylation of p53 in transformed cells: while p53 in transformed mouse cells revealed a marked quantitative increase in phosphorylation compared with p53 from normal cells, the corresponding patterns of p53 from normal and transformed rat cells were similar. Our data thus indicate species-specific differences in the phosphorylation of mouse and rat p53 in SV40-transformed cells, reflected by (i) different turnover rates at specific sites in mouse and rat p53 and (ii) phosphorylation of nonhomologous serine and threonine residues in rat p53, as revealed by indirect assignment of phosphorylation sites to the phosphopeptides of rat p53. Analyses of p53 from the SV40 tsA58 mutant-transformed F111 cell lines FR(tsA58)A (N type) and FR(tsA58)57 (A type) yielded no conclusive evidence for a direct correlation between phosphorylation of p53, the metabolic stabilization of p53, and expression of the transformed phenotype.  相似文献   

7.
Phosphopeptide analyses of the simian virus 40 (SV40) large tumor antigen (LT) in SV40-transformed rat cells, as well as in SV40 lytically infected monkey cells, showed that gel-purified LT that was not complexed to p53 (free LT) and p53-complexed LT differed substantially in their phosphorylation patterns. Most significantly, p53-complexed LT contained phosphopeptides not found in free LT. We show that these additional phosphopeptides were derived from MDM2, a cellular antagonist of p53, which coprecipitated with the p53-LT complexes, probably in a trimeric LT-p53-MDM2 complex. MDM2 also quantitatively bound the free p53 in SV40-transformed cells. Free LT, in contrast, was not found in complex with MDM2, indicating a specific targeting of the MDM2 protein by SV40. This specificity is underscored by significantly different phosphorylation patterns of the MDM2 proteins in normal and SV40-transformed cells. Furthermore, the MDM2 protein, like p53, becomes metabolically stabilized in SV40-transformed cells. This suggests the possibility that the specific targeting of MDM2 by SV40 is aimed at preventing MDM2-directed proteasomal degradation of p53 in SV40-infected and -transformed cells, thereby leading to metabolic stabilization of p53 in these cells.  相似文献   

8.
The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses.  相似文献   

9.
To understand the process and biological significance of metabolic stabilization of p53 during simian virus 40 (SV40)-induced cellular transformation, we analyzed cellular and viral parameters involved in this process. We demonstrate that neither large T expression as such nor the cellular phenotype (normal versus transformed) markedly influence the stability of p53 complexed to large T in SV40 abortively infected BALB/c mouse fibroblasts. In contrast, metabolic stabilization of p53 is an active cellular event, specifically induced by SV40. The ability of SV40 to induce a cellular response leading to stabilization of p53 complexed to large T is independent from the cellular phenotype and greatly varies between different cells. However, metabolic stability was conferred only to p53 in complex with large T, whereas the free p53 in these cells remained metabolically unstable. Comparative analyses of cellular transformation in various cells differing in stability of p53 complexed to large T upon abortive infection with SV40 revealed a strong correlation between the ability of SV40 to induce metabolic stabilization and its transformation efficiency. Our data suggest that metabolic stabilization and the ensuing enhanced levels of p53 are important for initiation and/or maintenance of SV40 transformation.  相似文献   

10.
To determine functional subcellular loci of p53, a cellular protein associated with cellular transformation, we analyzed the nucleoplasmic, chromatin, and nuclear matrix fractions from normal mouse 3T3 cells, from methylcholanthren-transformed mouse (MethA) cells, and from various simian virus 40 (SV40)-transformed cells for the presence of p53. In 3T3 and MethA cells, p53 was present in all nuclear subfractions, suggesting an association of p53 with different structural components of the nucleus. In 3T3 cells, p53 was rapidly turned over, whereas in MethA cells, p53 was metabolically stable. In SV40-transformed cells, p53 complexed to large tumor antigen (large T) was found in the nucleoplasmic and nuclear matrix fractions, as described previously (M. Staufenbiel and W. Deppert, Cell 33:173-181, 1983). In addition, however, metabolically stable p53 not complexed to large T (free p53) was also found in the chromatin and nuclear matrix fractions of these cells. This free p53 did not arise by dissociation of large T-p53 complexes, suggesting that stabilization of p53 in SV40-transformed cells can also occur by means other than formation of a complex with large T.  相似文献   

11.
The cellular phosphoprotein p53 is presumably involved in simian virus 40 (SV40)-induced transformation. We have monitored changes in the state of phosphorylation of p53 from normal versus SV40-infected or -transformed cells. In normal cells, p 53 was hardly phosphorylated. Upon infection or transformation, a quantitative and qualitative increase in p53 phosphorylation was observed as revealed by two-dimensional phosphopeptide analysis. This increase was dependent on a functional large T antigen. In rat cells, enhanced phosphorylation of p53 resulted in conversion to a second, electrophoretically distinct form. In cells transformed with transformation-defective mutants, phosphorylation of p53 was reduced and conversion to form 2 was inefficient. These data suggest (i) that SV40 large T antigen induces or activates a protein kinase, one substrate of which is p53, (ii) that transformation-defective mutants are impaired in kinase induction, and (iii) that either a certain phosphorylation state of p53 or the SV40-induced kinase is critical for efficient transformation.  相似文献   

12.
Cell growth control appears to be drastically altered as a consequence of transformation. Because the cell surface appears to have a role in modulating cell growth and simian virus 40 (SV40)-transformed cells express large T antigen (T-Ag) in the plasma membrane, we investigated whether surface T-Ag expression varies according to cell growth rate. Different growth states were obtained by various combinations of seeding density, serum concentration, and temperature, and cell cycle distributions were determined by flow microcytofluorometry. Actively dividing SV40-transformed mouse cell cultures were consistently found to express higher levels of surface T-Ag and T-Ag/p53 complex than cultures in which cells were mostly resting. In addition, the T-Ag/p53 complex disappeared from the surface of tsA7-transformed cells cultured under restrictive conditions known to induce complete growth arrest (39.5 degrees C), although the surface complex did not disappear from other tsA transformants able to keep cycling at 39.5 degrees C. These results suggest that surface SV40 T-Ag or surface T-Ag/p53 complex, or both, are involved in determining the growth characteristics of SV40-transformed cells.  相似文献   

13.
The antigenic structure of simian virus 40 (SV40) large tumor antigen (T-ag) in the plasma membranes of SV40-transformed mouse cells and SV40-infected monkey cells was characterized as a step toward defining possible biological function(s). Wild-type SV40, as well as a deletion mutant of SV40 (dl1263) which codes for a truncated T-ag with an altered carboxy terminus, was used to infect permissive cells. Members of a series of monoclonal antibodies directed against antigenic determinants on either the amino or the carboxy terminus of the T-ag polypeptide were able to precipitate surface T-ag (as well as nuclear T-ag) from both SV40-transformed and SV40-infected cells. Cellular protein p53 was coprecipitated with T-ag by all T-ag-reactive reagents from the surface and nucleus of SV40-transformed cells. In contrast, T-ag, but not T-ag-p53 complex, was recovered from the surface of SV40-infected cells. These results confirm that nuclear T-ag and surface T-ag are highly related molecules and that a complex of SV40 T-ag and p53 is present at the surface of SV40-transformed cells. Detectable levels of such a complex do not appear to be present on SV40-infected cells. Both the carboxy and amino termini of T-ag are exposed on the surfaces of SV40-transformed and -infected cells. The possible relevance of the presence of a T-ag-p53 complex on the surface of SV40-transformed cells and its absence from SV40-infected cells is considered.  相似文献   

14.
We have investigated the functional roles of two structural subsets of simian virus 40 (SV40) large T antigen, namely homo-oligomers and complexes with the host cellular p53 protein, for the transformed phenotype. We examined T antigen produced in cells transformed by temperature-sensitive SV40 large T mutants: heat-sensitive or unrestricted SV40 tsA58-transformed rat cells and unrestricted tsA1499 transformants. In both unrestricted cell lines, T antigen was temperature-sensitive only for the formation of fast sedimenting homo-oligomers. Corresponding to our recent observations obtained with tsA1499-infected monkey cells, in tsA1499 transformants large T was competent to form stable T-p53 complexes independently of the temperature. However, T antigen coded for by tsA58, which is heat-sensitive for binding to p53, occurred in stable complexes with this protein in unrestricted tsA58 transformants under all conditions. Furthermore, in both unrestricted transformants T-p53 complexes arise in the absence of homo-oligomers of T antigen. In conclusion, T antigen homo-oligomers are not involved in cell transformation, whereas T-p53 complexes may be involved in the maintenance of this phenotype.  相似文献   

15.
We have developed quantitative radioimmunological solid phase assays for the host protein p53 from mouse cells and from human cells. The first assay, for mouse p53, depends on having two monoclonal antibodies reacting with different determinants on the p53 molecule. With this assay we have shown that SV40-transformed cells have approximately 100-fold more p53 than untransformed mouse cells and that other transformed cells have intermediate levels. Embryonal carcinoma cell lines have approximately 50-fold less p53 than SV40-transformed cells. This is in contrast to the high levels of incorporation of [35S]methionine into p53 in these cells and indicates that metabolic labelling is not a valid approach for measuring p53 levels. The second assay, for human p53, required a different approach and made use of the anti-p53 antibodies detected in the sera of some breast cancer patients. Human tumour cell lines contained amounts of p53 varying from the high level seen in SV40-transformed human fibroblasts down to less than one hundredth of this amount. Normal human cells showed low levels of p53. The data confirm that many, but not all, human tumour cell lines contain more p53 than normal cells.  相似文献   

16.
It is known that large T antigen, the regulatory protein encoded by Simian virus 40 (SV40), forms tight complexes with the cellular p53 protein in SV40-transformed rodent cells. Using immunoaffinity procedures we have purified large T antigen and, in separate experiments, the cellular p53 protein. The two proteins formed complexes in vitro which bound well to double-stranded DNA fragments although in a sequence-unspecific manner. Free, uncomplexed T antigen readily converted double-stranded DNA into a single-stranded form whereas in-vitro-formed p53-T-antigen complexes were inactive in this reaction. We conclude that one function of p53 in SV40-transformed mouse cells could be the inhibition of the replication initiating activity of T antigen.  相似文献   

17.
Differential screening of a cDNA library was used to isolate probes for mRNAs that are induced in simian virus 40 (SV40)-transformed human keratinocytes. Several of these cDNAs hybrid select mRNAs which encode transformation-induced proteins found in the cytoskeletal component of SV40-transformed keratinocytes. One of these cDNAs was used to study the phenotype of normal and transformed cell lines derived from various tissues. We found that mRNA encoding the novel transformation-induced proteins is expressed in two squamous carcinoma cell lines derived from the oral epithelium, four SV40-transformed keratinocyte cell lines, and two SV40-transformed fibroblasts. Normal or transformed lymphoid cells or cell lines derived from carcinoma of the cervix do not express mRNAs which hybridize to these probes. The results from this study suggest that these probes may be used to detect markers of transformation in certain cell types.  相似文献   

18.
The localization of SV40 large T-antigen (T-Ag) and the cellular protein p53 in the nuclei of mouse and human SV40-transformed cells and of a methylcholanthrene-transformed mouse cell line, was studied. Their detection by ultrastructural immunocytochemistry with specific monoclonal antibodies employed two complementary methods used in parallel. These consisted of indirect immunoperoxidase labelling carried out before embedment on Triton-permeabilized cells, or indirect immunogold labelling applied to thin sections of cells embedded in Lowicryl K4M. The results indicate that in SV40-transformed cells both proteins are chiefly localized on peri- and interchromatin RNP fibrils. This shows that they occur in structures involved in the synthesis and processing of hnRNA. The nucleoli and chromatin did not appear to be labelled. In methylcholanthrene-transformed cells the protein p53 (in the absence of large T-Ag) was also detected on peri- and interchomatin fibrils. Taken together with recent results which demonstrated that, during lytic infection, T-Ag was associated chiefly with cellular chromatin (Harper, F, Florentin, Y & Puvion, E, Exp cell res 161 (1985) 434) [33], our experiments provide evidence that the transforming function of SV40 large T-Ag is dissociable from its function in SV40 lytic infection in terms of its subnuclear distribution.  相似文献   

19.
Human interferon (HuIFN) has a protective effect against ultraviolet (UV)-induced killing of Cockayne syndrome (CS) and xeroderma pigmentosum (XP) cells. Irradiation with ultraviolet (UV) resulted in nuclear accumulation of p53 in normal human fibroblast cells, and this accumulation was suppressed by treatment with HuIFN-beta. On the other hand, a large amount of p53 was found in both nuclear and cytoplasmic fractions of one SV40-transformed XP and two SV40-transformed CS cell strains irrespective of UV irradiation. Treatment with HuIFN-beta reduced the level of pro-apoptotic Bax protein without suppression of nuclear accumulation of p53 in the CS cells but not in the XP cells. These findings suggest that there are different mechanisms of UV-refractoriness caused by HuIFN-beta in UV-sensitive CS and XP cells.  相似文献   

20.
Syrian hamster embryo cells transformed by adenovirus type 2 (Ad2) or simian virus 40 (SV40) differ markedly in morphology, tumorigenicity, and susceptibility to in vitro lysis by nonspecific cytotoxic cells. Hybrid cells formed by fusing Ad2- and SV40-transformed Syrian hamster embryo cells may express only SV40 T antigens or both SV40 and Ad2 T antigens. Hybrids that express only SV40 T antigens are indistinguishable from the nonhybrid SV40-transformed phenotype, whereas hybrid cells that express T antigens from both viruses closely resemble the nonhybrid parental Ad2-transformed phenotype. Because these hybrid cells have been useful in the study of neoplastic transformation, we determined the amount of viral antigens that they accumulate in an attempt to correlate the level of expression of the transforming viral genes with some of their phenotypic properties. Hybrid cells that expressed proteins from both viruses showed reduced levels of SV40 T antigens compared with those of hybrid cells that did not express Ad2 T antigens. We also found that the production of several cellular proteins that influence cytomorphology was inhibited in hybrid and nonhybrid cells that expressed Ad2 T antigens, and the repression of these cellular proteins correlated with a change in cytomorphology from fibroblastic to spherical. Finally, we showed that the susceptibility of our hybrid cells to in vitro lysis by natural killer cells and activated macrophages, two putative host-effector cells involved in defense against neoplasia, correlated closely with the level of expression of a 58,000-dalton Ad2 protein. The results reported here, together with the results of previous studies, indicate that the oncogenic potential of hybrid cells that express both Ad2 and SV40 antigens is extremely sensitive to Ad2 expression, whereas other phenotypic properties depend on Ad2 expression in a dose-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号