首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(ω-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium.  相似文献   

2.
Distinguishing nest-mates from non-nest-mates underlies key animal behaviours, such as territoriality, altruism and the evolution of sociality. Despite its importance, there is very little empirical support for such a mechanism in nature. Here we provide data that the nest-mate recognition mechanism in an ant is based on a colony-specific Z9-alkene signature, proving that surface chemicals are indeed used in ant nest-mate recognition as was suggested 100 years ago. We investigated the cuticular hydrocarbon profiles of 10 Formica exsecta colonies that are composed almost entirely of a Z9-alkene and alkane component. Then we showed that worker aggression is only elicited by the Z9-alkene part. This was confirmed using synthetic Z9-alkene and alkane blends matched to the individual colony profiles of the two most different chemical colonies. In both colonies, only glass beads with 'nest-mate' alkene profiles received reduced aggression. Finally, changing the abundance of a single Z9-alkene on live ants was shown to significantly increase the aggression they received from nest-mates in all five colonies tested. Our data suggest that nest-mate discrimination in the social insects has evolved to rely upon highly sensitive responses to relatively few compounds.  相似文献   

3.
Although the majority of social insect colonies are headed by a single queen, some species possess nests that contain numerous reproductive queens (polygyny), a trait that is particularly widespread amongst the ants. Polygyny is often associated with a lack of conspecific inter-nest aggression between workers. This is hypothesised to result from increased nestmate cue diversity within nests, since polygynous nests are more genetically diverse than monogynous nests. Alternatively, it may reflect the common origin of polygynous nests that form polydomous networks. We exploit the recent discovery that the nestmate discrimination system in the ant Formica exsecta is based on cuticular hydrocarbons to investigate cue (Z9-alkenes) diversity in several monogynous and polygynous populations. Contrary to previous predictions, in all polygynous populations, the variation between nests in the Z9-alkene profiles was reduced relative to that found in monogynous populations. However, nest-specific Z9-alkene profiles with little variation amongst nestmate workers were still maintained irrespective of nest type or population. This suggests a very effective gestalt mechanism that homogenises the chemical discrimination cues, despite genetic diversity within colonies. Although the reduction in variation between nests was associated with reduced worker aggression on the population level, it cannot totally explain the weak aggression associated with polygynous populations.  相似文献   

4.
NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Westernblot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.  相似文献   

5.
The nuclear gene mutant of barley, vir-115, shows a developmentally induced loss of D1 synthesis that results in inactivation of Photosystem II. Translation in plastids isolated from 1 h illuminated vir-115 seedlings is similar to wild type. In wild-type barley, illumination of plants for 16 to 72 h results in increased radiolabel incorporation into the D1 translation intermediates of 15–24 kDa. In contrast, these D1 translation intermediates were not observed in vir-115 plastids isolated from plants illuminated for 16–72 h. In addition, after 72 h of illumination, radiolabel incorporation into D1 was undetectable in vir-115 plastids. The level and distribution ofpsbA mRNA in membrane-associated polysomes was similar in wild-type and vir-115 mutant plastids isolated from plants illuminated for 16–72 h. Toeprint analysis showed similar levels of translation initiation complexes onpsbA mRNA in vir-115 and wild-type plastids. These results indicate that translation initiation and elongation of D1 is not significantly altered in the mutant plastids. Ribosome pausing onpsbA mRNA was observed in wild-type and vir-115 mutant plastids. Therefore, the absence of D1 translation intermediates in mutant plastids is not due to a lack of ribosome pausing onpsbA mRNA. Based on these results, it is proposed that vir-115 lacks or contains a modified nuclear-encoded gene product which normally stabilizes the D1 translation intermediates. In wild-type plastids, ribosome pausing and stabilization of D1 translation intermediates is proposed to facilitate assembly of cofactors such as chlorophyll will D1 allowing continued D1 synthesis and accumulation in mature chloroplasts.  相似文献   

6.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

7.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group’s oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

8.
Oxidation of 1-Tetradecene by Pseudomonas aeruginosa   总被引:7,自引:6,他引:1  
Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth.  相似文献   

9.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas cichorii YN2 cultured with C6–C12 1-alkenes was studied. PHAs containing repeating units with terminal epoxide groups were obtained when C7–C12 1-alkenes were fed separately as the only carbon source, but no epoxidized unit was detected when 1-hexene was fed. The content of epoxidized units in the polymers was in the range of 4–20 mol%, which was not dependent on the C atom length of the 1-alkene used as a substrate. The polymers produced undergo a glass transition at around −40 °C, and number average molecular weights were in the range of 1 50 000–2 00 000 as determined by GPC relative to polystyrene, with Mw/Mn ratios of 1.9–2.5. As an intermediate, the corresponding 1,2-epoxyalkane was found in the culture medium. According to this result, the epoxidation of the 1-alkene is the initial step in the synthetic pathway of the epoxy unit in the polymer.  相似文献   

10.
Iodosulfonamidation of peracetylated glycals was investigated using either a combination of N-iodosuccinimide/iodine or iodine chloride as a source of iodonium ion. 1,2-trans- and 1,2-cis-2-deoxy-2-iodo-1-sulfonamido hexoses were, respectively, obtained depending on the reagent system used. Both series of isomers were successfully converted to 1,2-di-nitrogenated compounds, for example, 1-azido-1,2-dideoxy-2-sulfonamido sugars, which are useful intermediates for the synthesis of N-linked glycoproteins or glycoconjugates.  相似文献   

11.
The capability of utilizing a TCA cycle intermediates as the sole carbon source by the multi-vitamin auxotrophic yeastTorulopsis glabrata CCTCC M202019 was demonstrated with plate count method. It is indicated thatT. glabrata could grew on a medium with one of the TCA cycle intermediates as the sole carbon source, but more colonies were observed when glucose, acetate and one of the TCA cycle intermediates coexisted in the medium. Among the intermediates of the TCA cycle examined in this study, cell growth was improved by supplementing oxaloacetate. Further investigation showed that the presence of acetate was necessary when oxaloacetate was supplemented. By supplementing with 10 g/L of oxaloacetate in pyruvate batch fermentation, dry cell weight increased from 11.8 g/L to 13.6 g/L, and pyruvate productivity was enhanced from 0.96 gL−1h−1 to 1.19 gL−1h−1 after cultivation of 56 h. The yield of pyruvate to glucose was also improved from 0.63 g/g to 0.66 g/g. These results indicate that under vitamins limitation, the productivity and yield of pyruvate could be enhancedvia an increase of cell growth by the supplementation of oxaloacetate.  相似文献   

12.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

13.
Brassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR‐related acyltransferase 1), a gene encoding a putative acyltransferase, was found to be involved in vascular bundle development in a full‐length cDNA over‐expressor (FOX) screen. Over‐expression of BAT1 resulted in typical BR‐deficient phenotypes, which were rescued by exogenously applied castasterone and brassinolide. Analyses of BR profiles demonstrated that BAT1 alters levels of several brassinolide biosynthetic intermediates, including 6‐deoxotyphasterol, typhasterol and 6‐deoxocastasterone. BAT1 is mainly localized in the endoplasmic reticulum. BAT1 is highly expressed in young tissues and vascular bundles, and its expression is induced by auxin. These data suggest that BAT1 is involved in BR homeostasis, probably by conversion of brassinolide intermediates into acylated BR conjugates.  相似文献   

14.
Microbial Metabolism of Quinoline by Comamonas sp.   总被引:1,自引:0,他引:1  
An aerobic bacterial strain which can use quinoline as the sole carbon and energy source has been isolated from activated sludge and identified as Comamonas sp. The microbial metabolism of quinoline by this strain has been investigated. A pH 8 and a temperature of 30 °C were the optimum degradation conditions of quinoline. Five intermediates including 2-oxo-1,2-dihydroquinoline, 5-hydroxy-6-(2-carboxyethenyl)-1H-2-pyridone, 6-hydroxy-2-oxo-1,2-dihydroquinoline, 5,6-dihydroxy-2-oxo-1,2-dihydroquinoline, and 8-hydroxy-2-oxo-1,2-dihydroquinoline were found during quinoline biodegradation. The presence of these intermediates suggested that at least two pathways were involved for quinoline degradation by Comamonas sp. and a reasonable degradation route was proposed to account for the intermediates observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
To discover new, potent, and selective inhibitors for the murine gamma-aminobutyric acid transporter 4 (mGAT4), the structure-activity relationship (SAR) study of a new cis-alkene analog family based on DDPM-1457 [(S)-2], which previously showed promising inhibitory potency at and subtype selectivity for mGAT4, was conducted. To uncover the importance of the differences between the trans- and the cis-alkene moiety in the spacer, the present publication describes the synthesis of the new compounds via catalytic hydrogenation with Lindlar’s catalyst. The biological results collected by the SAR study revealed that analog rac-7j characterized by a four-instead of a three-carbon atom spacer with a cis double bond applying to the majority of the studied compounds displays a surprisingly high potency at mGAT1 (pIC50?=?6.00?±?0.04) and at the same time a reasonable potency at mGAT4 (pIC50?=?4.82).  相似文献   

16.
High Mobility Group AT‐hook 1 (HMGA1) was identified as a target of miR‐214 in human cervical and colorectal cancers (CaCx and CRC) in a previous study. While the expression of miR‐214 remains suppressed, HMGA1 behaves as a potent oncogene and plays crucial roles in several aberrant signalling pathways by interacting with intermediates like RELA, CTNNB1, STAT3, and TP53 in CaCx and CRC. Hypothetically, miR‐214 should be able to regulate the stabilization of some of these intermediates through the regulation of HMGA1. This was assessed by ectopically expressing miR‐214 or complementarily, by inhibiting the expression of HMGA1. In promoter luciferase assays, miR‐214 inhibited NF‐κB and Wnt activities but elevated TP53 activity in cancer cells. Further, miR‐214 suppressed the expression of HMGA1, RELA, CTNNB1, and STAT3 while elevating TP53 levels, similar to when small interfering RNA (siRNA) against HMGA1 was used, as revealed by Western blotting. It is suggested that poor expression of miR‐214, commonly reported in CaCx and CRC tissues, may not only result in the sustained expression of HMGA1 but also that of RELA, CTNNB1, and STAT3, and a congruent suppression of TP53 during cancer initiation/progression. These several states are, however, reversed when miR‐214 is reintroduced and could explain the tumour suppressive functions observed in earlier studies. Further studies are, however, required to reveal how microRNA‐mediated regulation of HMGA1 expression may affect individual signalling pathways in CaCx and CRC. Current results reveal that miR‐214 is not only able to regulate the expression of its direct target, HMGA1, but also that of a few signalling intermediates like TP53, RELA, CTNNB1, and STAT3, with which HMGA1 interacts. These intermediates play crucial roles in signalling pathways commonly deregulated in human CaCx and CRC. Hence, it is proposed that miR‐214 might act as a tumour suppressor by regulating several aberrant signalling pathways through HMGA1. This knowledge has the potential to help design novel therapeutic strategies in CaCx and CRC.  相似文献   

17.
Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria.  相似文献   

18.
Khazanehdari KA  Borts RH 《Chromosoma》2000,109(1-2):94-102
The 5′-3′ exonuclease Exo1p from Saccharomyces cerevisiae is required for wild-type levels of meiotic crossing-over and normal meiotic chromosome segregation as is the meiosis-specific MutS homologue, Msh4p. Mutations in both genes reduce crossing-over by approximately two-fold, but Δmsh4 strains have significantly lower viability and a higher frequency of meiosis I non-disjunction. Epistasis analysis indicates a complex interaction between the two genes. Although crossing-over was not detectably lower in the double mutant, viability was significantly worse than either single mutant. Such a result suggests that the two genes are affecting meiotic viability by distinct mechanisms. We propose that Δexo1 affects chromosome segregation by reducing crossing-over, while Δmsh4 affects both the frequency and distribution of crossovers. Mutation in EXO1 reduces gene conversion frequencies significantly at some but not all loci, suggesting that other enzymes are also involved in DNA resection. We propose that Exo1p plays an early role in establishing some recombination intermediates by generating single-stranded tails. The role of Msh4p is suggested to be in determining whether some recombination intermediates are resolved as crossover events and in generating crossover interference. The synergistic effect of Δexo1Δmsh4 on spore viability suggests that the two genes have partially compensatory roles in a process affecting meiotic success. Received: 10 November 1999; in revised form: 14 January 2000 / Accepted: 14 January 2000  相似文献   

19.
Ustilaginoidins, toxic to plants, animals and human, are one of major types of mycotoxins produced by Ustilaginoidea virens. In this study, a gene cluster containing the polyketide synthase gene UvPKS1 was analysed via gene replacement and biochemical studies to determine ustilaginoidin biosynthetic pathway in U. virens. UvPKS1 was first proven to be responsible for the first step of ustilaginoidin biosynthesis, since neither ustilaginoidin derivatives nor intermediates were produced when UvPKS1 was deleted. Replacement of ugsO greatly reduced ustilaginoidin production but increased the ratios of dehydrogenated/hydrogenated ustilagioidin derivatives. The enhanced growth rate of the ΔugsO mutant indicates that accumulation of certain ustilaginoidin derivatives may adversely affect mycelial growth in U. virens. Deletion of ugsT encoding a putative MFS transporter disrupted the ability to generate ustilaginoidins. The ustilaginoidin derivatives produced in the ΔugsJ mutant all lack C3-methyl, indicating that UgsJ is responsible for C3-methylation. Only monomeric intermediates, such as 3-methyl-dihydro-nor-rubrofusarin, but no ustilaginoidin derivatives were generated in the ΔugsL mutant, indicating that UgsL is responsible for the dimerization of nor-rubrofusarin derivatives to produce ustilaginoidins. However, ugsR2 deletion had no dramatic effect on ustilaginoidin biosynthesis. Together, biochemical analyses with bioinformatics and chemoinformatics uncover a multiple-step enzyme-catalysed pathway for ustilaginoidin biosynthesis in U. virens.  相似文献   

20.
The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two‐dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D‐loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark‐field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号