首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily ration of juvenile Japanese Spanish mackerel Scomberomorus niphonius (32·1–33·1 mm standard length, L S) was estimated at three temperatures (18·6, 19·5 and 21·2° C) in the laboratory. Gastric evacuation rate ranged between 0·398 (18·6° C) and 0·431 (21·2° C). Diel change in instantaneous consumption rate indicated that juvenile Japanese Spanish mackerel are daylight feeders. The estimated values of the daily ration ranged between 66·1%(18·6° C) and 82·6%(21·2° C) of body mass. These per cent values of daily ration were converted to daily consumption in mg (28 mg at 18·6° C to 34 mg at 21·2° C) using the mean dry body mass of juvenile Japanese Spanish mackerel of 30 mm (42·1 mg). Stomach content analysis of wild specimens collected in the Seto Inland Sea, south‐western Japan, revealed that the majority of wild Japanese Spanish mackerel larvae and juveniles ingested fish larvae with a body size >50% of the predator L S. Based on the predator‐prey size relationship, the daily consumption of a Japanese Spanish mackerel juvenile of 30 mm was equivalent to 5·1 (18·6° C) to 6·4 (21·2° C) Japanese anchovy Engraulis japonicus larvae which was the dominant prey organism in stomachs of the wild Japanese Spanish mackerel.  相似文献   

2.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

3.
The effects of the timing of initial feeding (0, 1, 2, 3 and 4 days after yolk exhaustion) and temperature (15, 18 and 21° C) on the point‐of‐no‐return (PNR), survival and growth of laboratory‐reared Japanese flounder Paralichthys olivaceus larvae were studied under controlled conditions. The larvae reached PNR on 7·7, 5·2 and 4·2 days‐post‐hatching (dph) at 15, 18 and 21° C, respectively. At each temperature, larval growth did not differ significantly among the delayed initial feedings 1 day before PNR but decreased significantly in larvae first fed after that. In the treatments where initial feeding was equally delayed, larvae grew significantly faster at 18 and 21° C than at 15° C. The larvae survived apparently better at 15 and 18° C than at 21° C when initial feeding was equally delayed. At each temperature, survival of the larvae first fed before PNR did not differ noticeably, while delayed initial feeding after that apparently reduced their survival. These results indicated that there existed a negatively temperature‐dependent PNR in the Japanese flounder larvae. Survival and growth of the larvae strongly depended on temperature as well as the timing of initial feeding. High temperature accelerated the yolk exhaustion and growth of the larvae and thus reduced their starvation tolerance and survival. To avoid potential starvation mortality and obtain good growth, the Japanese flounder larvae must establish successful initial feeding within 2 days after yolk exhaustion at 15° C and within 1 day at both 18 and 21° C.  相似文献   

4.
Impact of temperature on food intake and growth in juvenile burbot   总被引:4,自引:1,他引:3  
The effect of temperature on food consumption, food conversion and somatic growth was investigated with juvenile burbot Lota lota (age 0 years). Juvenile burbot showed a significant dome shaped relationship between relative daily food consumption ( C R) and temperature ( T ) with C R = − 0·00044 T 2 + 0·01583 T  − 0·06010; ( n  = 90, r 2 = 0·61). Maximum C R was at 17·9° C (95% CL 17·2–18·6° C). The temperature related instantaneous growth rate ( G ) also followed a dome shaped function with G  = − 0·000063 T 2 + 0·002010 T  − 0·007462; ( n  = 95, r 2 = 0·57), with maximum growth rate at 16·0° C (95% CL 15·3–16·6° C). A significant linear relationship was found between the water temperature and the conversion coefficient ( C C) with C C = − 1·63 T  + 59·04; ( n  = 80, r 2 = 0·74). The results indicate that juvenile burbot in large lakes benefit from higher water temperatures in the littoral zone, by increased food uptake and growth, especially during the warm summer months. Because profundal water temperatures do not reflect the optimal temperature for food consumption in large burbot, temperature is unlikely to be the main proximate factor for the obligate littoral‐profundal migration of juvenile burbot observed in many lake populations.  相似文献   

5.
Individual variation in the rate of oxygen consumption by zebrafish embryos   总被引:3,自引:0,他引:3  
A sensitive microsensor‐based method was used to measure oxygen consumption of individual zebrafish Danio rerio embryos at 6 h intervals from 24 to 75 h post‐fertilization. An increase in oxygen consumption rates from 4·54 to 8·29 nmol O2 h−1 was found during this period. At the individual level the differences in oxygen consumption rates caused the total oxygen consumption from 24 to 75 h post‐fertilization to vary between 0·261 and 0·462 μmol O2 per individual with a mean of 0·379 μmol O2 per individual. A separate carbon mass balance study corroborated the mean total oxygen consumption obtained by yielding a respiratory quotient of 0·80 for this period. These results suggest that there is significant intraspecific variation in the metabolic rate of developing zebrafish embryos, which may influence other early life‐history traits such as growth and starvation resistance.  相似文献   

6.
The growth properties of juvenile spotted wolffish Anarhichas minor reared at 4, 6, 8 and 12° C, and a group reared under 'temperature steps', (T‐step) i.e . with temperature reduced successively from 12 to 9 and 6° C were investigated. Growth rate and feed efficiency ration was significantly influenced by temperature and fish size. Overall growth rate was highest at 6° C (0·68% day−1) and lowest at 12° C (0·48% day−1), while the 4 and 8° C, and the T‐step groups had similar overall growth rates, i.e . 0·59, 0·62 and 0·51% day−1 respectively. Optimal temperature for growth ( T opt G ) and feed efficiency ratio (Topt FCE) decreased as fish size increased, indicating an ontogenetic reduction in T opt G and T opt FCE. The results suggest a T opt G of juvenile spotted wolffish in the size range 135–380 g, dropping from 7·9° C for 130–135 g to 6·6° C for 360–380 g juveniles. The T opt FCE dropped from 7·4° C for 120–150 g to 6·5° C for 300–380 g juveniles. A wider parabolic regression curve between growth, feed efficiency ratio and temperature as fish size increased, may indicate increased temperature tolerance with size. Individual growth rates varied greatly at all time periods within the experimental temperatures, but at the same time significant size rank correlations were maintained and this may indicate stable size hierarchies in juvenile spotted wolffish.  相似文献   

7.
Duchemin  M. B.  Audet  C.  & Lambert  Y. 《Journal of fish biology》2004,65(S1):328-328
The winter flounder is an in‐shore flatfish living in shallow waters on the east coast of North America from Labrador to Georgia. In the St Lawrence estuary, the reproductive season is May and June. Our objective was to test the effects of winter‐spring photoperiod and temperature conditions on the timing of sexual maturation in both males and females. Groups (16 animals each) of winter flounder breeders were maintained from mid‐January to mid‐May under five different experimental conditions: (1) natural photoperiod and temperature conditions; (2) natural photoperiod, 6° C; (3) 15L : 9D, natural temperature conditions; (4) 15L : 9D, 6° C; (5) accelerated photoperiod increase from winter to spring conditions, 6° C. Natural photoperiod and temperature conditions correspond to a gradual increase in light period from 8L : 16D (January) to 15L : 9D (May) and in temperature from −1° C (January to April) to 6° C (May). GSI and condition factor did not differ among the treatments ( P  > 0·05). In males, milt production occurred simultaneously in the different treatments and histological examination did not indicate any significant effect of either photoperiod or temperature on testes development. In females, seven stages of oocyte development were observed. Both the number of oocytes at the cortical alveoli stage and number of atretic oocytes increased at 6° C (warm temperature conditions). Overall, neither photoperiod nor temperature modified the reproductive period. Warm winter‐spring temperature conditions, however, may decrease egg numbers and egg quality.  相似文献   

8.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

9.
Routine oxygen consumption rates of young spotted seatrout Cynoscion nebulosus (Sciaenidae) were measured over a range of temperatures (24, 28, 30 and 32° C) and salinities (5, 10, 20, 35 and 45). Larvae and juveniles, 4·1–39·5 mm standard length ( L S), ranging several orders of magnitude in dry body mass were used to estimate the mass–metabolism relationship. Oxygen consumption (μl O2 larva−1 h−1) scaled isometrically with body mass for larvae <5·8 mm L S(phase I, slope = 1·04) and allometrically thereafter (phase II, slope = 0·78). The inflection in the mass–metabolism relationship coincided with the formation of the hypural plate and an increase in the relative tail size of larvae. Salinity did not have a significant effect on routine metabolism during phase I. Temperature and salinity significantly affected routine metabolism during phase II of the mass–metabolism relationship. The effect of salinity was temperature dependent, and was significant only at 30° C. Response surfaces describing the environmental influences on routine metabolism were developed to provide a bioenergetic basis for modelling environmental constraints on growth.  相似文献   

10.
European sea bass Dicentrarchus labrax of the north‐western (NW) and south‐eastern (SE) Mediterranean Sea strains were exposed to different temperatures (13, 17 or 21° C) during the larval rearing (11–51 days post hatching, dph) or nursery periods (55–95 dph), in order to examine the effects of temperature on sex differentiation and subsequent growth during the first year of life. Higher growth was observed during exposure to higher temperatures, but fish of the NW strain exposed to 13 or 17° C during larval rearing exhibited compensatory growth once exposure to the lower temperatures finished, and as a result their final size at 300 dph was similar or greater to the group exposed to 21° C. Fish exposed to 17° C during the nursery period also had similar size to fish exposed to 21° C after 300 days of rearing, but the fish exposed to 13° C remained significantly smaller (ANOVA, n  = 55–100, P  < 0·05). There were significant differences in the sex ratio among the fish exposed to different temperatures during the two periods of rearing, with high temperature (21° C) resulting in a significantly higher percentage of males in the population, both in the NW (ANOVA, n  = 2, P  < 0·04) and SE populations (ANOVA, n  = 2, P  < 0·01). The masculinization effect of high temperature was significantly stronger during the larval rearing stage, both in the NW (ANOVA, n  = 2, P  < 0·005) and SE populations (ANOVA, n  = 2, P  < 0·01). None of the temperature manipulations could produce 100% females, suggesting that there is a part of the genetic component in sex differentiation which is not labile to environmental influence.  相似文献   

11.
Endurance swimming of European eel   总被引:2,自引:0,他引:2  
A long‐term swim trial was performed with five female silver eels Anguilla anguilla of 0·8–1·0 kg ( c . 80 cm total length, L T) swimming at 0·5 body lengths (BL) s−1, corresponding to the mean swimming speed during spawning migration. The design of the Blazka‐type swim tunnel was significantly improved, and for the first time the flow pattern of a swim tunnel for fish was evaluated with the Laser‐Doppler method. The velocity profile over three different cross‐sections was determined. It was observed that 80% of the water velocity drop‐off occurred over a boundary layer of 20 mm. Therefore, swim velocity errors were negligible as the eels always swam outside this layer. The fish were able to swim continuously day and night during a period of 3 months in the swim tunnel through which fresh water at 19° C was passed. The oxygen consumption rates remained stable at 36·9 ± 2·9 mg O2 kg−1 h−1 over the 3 months swimming period for all tested eels. The mean cost of transportation was 28·2 mg O2 kg−1 km−1. From the total energy consumption the calculated decline in fat content was 30%. When extrapolating to 6000 km this would have been 60%, leaving only 40% of the total energy reserves for reproduction after arriving at the spawning site. Therefore low cost of transport combined with high fat content are crucial for the capacity of the eel to cross the Atlantic Ocean and reproduce.  相似文献   

12.
Rates of oxygen consumption for Atlantic salmon Salmo salar embryos approaching hatching were determined. Values were recorded using a 'closed system' experimental set‐up. A magnetic stirrer was used to ensure that zones of oxygen depletion did not develop in the micro‐environment surrounding the respiring eggs. Recorded values of oxygen consumption ranged from 0·0024 to 0·0038 mg O2 egg−1 h−1, with a mean consumption rate of 0·0032 mg O2 egg−1 h−1. The values of oxygen consumption were similar to those reported in other studies using a closed system experimental set‐up, however, they were lower than those reported in a study adopting a flow‐through system. The introduction of clay‐sized sediment to the incubation chamber created a thin film (<1 mm) of sediment on the egg surface, and resulted in reduced rates of oxygen consumption. The additional 0·3 g of clay sediment reduced oxygen consumption by an average of 41% and the addition of a further 0·2 g of clay sediment reduced consumption by an average of 98%. Two explanations for the recorded reduction in consumption were proposed: (i) the creation of a low permeability seal around the eggs restricted the availability of oxygen to the incubating embryos and (ii) the clay‐sized fine sediment physically blocked the micro‐pore canals in the egg membrane, thereby restricting oxygen uptake.  相似文献   

13.
To assess the influence of water temperature on silver uptake, rainbow trout Oncorhynchus mykiss ( c . 50 g; held at 13° C) were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 4 and 16° C without previous temperature acclimation. To assess the influence of temperature on elimination of previously accumulated Ag, rainbow trout were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 12° C, then were randomly divided amongst two Ag‐free water containers, differing only in temperature (3 and 16° C), for 2 months. In the uptake study greater accumulation of Ag was seen in the gills, plasma and especially the livers and bile of 'warm' rainbow trout (16° C) compared to 'cold' rainbow trout (4° C), which can be explained by the higher metabolic rates of the warmer fish. In the depuration study there was no net elimination of Ag from the livers and bile but there was biphasic elimination of Ag from the gills and plasma of 'warm' and 'cold' fish, but with few differences between them. This indicated that temperature‐dependent processes were less important in Ag elimination than in Ag uptake. Toxicokinetic modelling of Ag uptake by livers indicated four‐fold greater uptake of Ag by 'warm' rainbow trout compared to 'cold' rainbow trout (one compartment uptake model). Elimination of previously accumulated Ag from the plasma was best fitted by a two compartment rate‐constant based model, with approximately half the plasma Ag load eliminated within 24 h, followed by slower elimination of Ag over 2 months.  相似文献   

14.
The temperature and mass dependence of maximum consumption rate was measured for larval and early juvenile spotted seatrout Cynoscion nebulosus . Maximum consumption ( C MAX) estimates were obtained from feeding and gut evacuation experiments on larvae (3·8–19 mm standard length, L S) at three temperatures (24, 28 and 32° C), and maximum consumption experiments on juveniles at three temperatures (20, 26 and 32° C). Feeding levels were determined for larvae fed live prey ( Brachionus plicatilis and Artemia salina ) ad libitum . The midgut and total evacuation times were estimated for fish feeding continuously and discontinuously using alternate meals of tagged and untagged live prey. Temperature and fish size had significant effects on gut evacuation and consumption. The gut evacuation time increased with increasing fish size, and decreased with increasing temperatures. Mass‐specific midgut contents increased for small larvae <0·156 mg dry mass ( M D)( c . 4 mm L S), and decreased for larger larvae and juveniles. Maximum consumption was modelled by fitting a polynomial function to a reduced dataset of individuals feeding at high levels. The C MAX model predicted an initial increase in specific feeding rate from 70 to 155% M D day−1 for small larvae, before declining for larger larvae and juveniles.  相似文献   

15.
Routine oxygen consumption rates of bonnethead sharks, Sphyrna tiburo , increased from 141·3±29·7 mg O2 kg−1 h−1 during autumn to 218·6±64·2 mg O2 kg−1 h−1 during spring, and 329·7±38·3 mg O2 kg−1 h−1 during summer. The rate of routine oxygen consumption increased over the entire seasonal temperature range (20–30° C) at a Q 10=2·34.  相似文献   

16.
Underyearling Lake Inari Arctic charr Salvelinus alpinus were acclimated to 11·0) C for 3 weeks, and then one group was maintained at 11·0) C and others were exposed to 14·4) Cconst, 17·7) Cconst or a diel fluctuating temperature of 14·3° C ± 1° C (14·3° Cfluc). Routine rates of oxygen consumption and ammonia excretion were measured over 10 days before the temperature change and over 31 days following the change. Measurements were made on fish that were feeding and growing. The temperature increase produced an immediate increase in oxygen consumption. There was then a decline over the next few days, suggesting that thermal acclimation was rapid. For groups exposed to constant temperature there was an increase in oxygen consumption ( M accl, mg kg−1 h−1) with increasing temperature ( T ), the relationship being approximated by an exponential model: M accl= 46·53e0·086 T . At 14·3° Cfluc oxygen consumption declined during the 3–4 days following the temperature shift, but remained higher than at 14·4° Cconst. This indicates that small temperature fluctuations have some additional influences that increase metabolic rate. Ammonia excretion rates showed diel variations. Excretion was lower at 11° Cconst than at other temperatures, and increases in temperature had a significant effect on ammonia excretion rate. Fluctuating (14·3° Cfluc) temperature did not influence ammonia excretion relative to constant temperature (14·4° Cconst).  相似文献   

17.
Embryos and yolk‐feeding larvae of lake minnow Eupallasella percnurus were reared at 13, 16, 19, 22 and 25° C with no access to external food. Time from egg activation to first embryonic movements, hatching, filling of swimbladder and final yolk resorption increased with decreasing temperature. At 13° C, c . 40% of larvae were unable to fill their swimbladder. The predicted lower temperature at which development and growth ceased (biological zero, t 0) was the same for both processes, c . 7·5–10·5° C. There was no ontogenetic shift in the t 0 value. Temperature coefficients for development ( Q 10dev.) ranged from 2 to 3 at 19–25° C, but were higher in hatched larvae at lower temperatures. Eggs of E. percnurus had a combination of small size, high hydration and low caloric value of fresh matter. Dry mass of larval tissue on yolk, percentage of dry matter in wet matter, and specific growth rate were maximized at 22 and 25° C. At 19–25° C, energy and matter contained in the initial eggs were converted to body tissue most efficiently. Temperatures from 22 to 25° C are considered optimal for E. percnurus embryos and yolk‐feeding larvae and are recommended for their indoor rearing.  相似文献   

18.
Ontogenetic changes in temperature preference of Atlantic cod   总被引:4,自引:0,他引:4  
Final thermal preferendum ( T ) experiments were conducted in a horizontal thermal gradient tank from the beginning of August 2001 to mid‐November 2001 using Atlantic cod Gadus morhua from 6·5 to 79·0 cm fork length ( L F). The value of T varied significantly ( P  < 0·005) with L F( T  = 7·23–0·054 L F), with smaller (younger) fish choosing higher temperatures than larger (older) fish. The preferendum varied from 6·9° C for fish of 6·5 cm to 3·0° C for those of 79·0 cm. Experiments comparing fish positions in the gradient tank between thermal gradients of 0·5–11·0 and 4·5–14·5° C demonstrated that fish positions were determined by temperature selection instead of undesirable tank effects. This study is the first to demonstrate the effect of ontogeny on temperature preferences of a marine fish species.  相似文献   

19.
The resting oxygen consumption     , postprandial and post-exercise peak oxygen consumption     of 137 juvenile southern catfish Silurus meridionalis , weighing 18·5 ± 0·8 g (mean ± s . d .), were measured at 25° C to determine whether     is positively related to postprandial and post-exercise     in sedentary S. meridionalis . In addition, postprandial metabolic response [ i.e. the specific dynamic action (SDA)] after a satiating meal and the growth performance as a consequence of a 3 week feeding-growth trail were measured in 40 S. meridionalis , weighing 14·3 ± 0·2 g, at 25° C to determine whether postprandial     is positively related to growth rate. Postprandial     was positively correlated with     , while post-exercise     was not. Both postprandial     and post-exercise     were positively correlated with factorial and absolute scope. There was no significant correlation between the growth rate and postprandial     in S. meridionalis . It suggested that as a sit-and-wait forager with low     , low post-exercise     and high postprandial     , the expenditure of energy for maintenance in S. meridionalis may be more closely related to digestive processes than locomotor activities.  相似文献   

20.
Relationships between nutritional state, behavioural response to prey and gastric evacuation rates were examined in juvenile Pacific halibut Hippoglossus stenolepis feeding on squid. Pacific halibut reared at 2, 6 and 10° C were fasted for 1 or 7 days to generate variation in energetic state. The 7 day fast resulted in measurable declines in condition indices at 10 and 6° C but not at 2° C. At 10° C, all Pacific halibut consumed the first meal offered, but fish previously fasted for 7 days took significantly longer to locate and consume the meal than fish fasted for only 1 day. At 2° C, Pacific halibut fasted for 7 days did not generally consume the first meal offered, but resumed feeding 2·1 days sooner, on average, than fish fasted for only 1 day. The gastric evacuation rate of the squid meal was best described by a power model with near‐exponential curvature ( a  = 1·011). The evacuation rate was strongly temperature‐dependent ( Q 10 = 3·65) but displayed the same degree of variability at each temperature. The evacuation rate in Pacific halibut was not affected by feeding history, body size or energetic state. Furthermore, individual variation in gastric evacuation rate was not correlated with feeding responsiveness at any temperature. These results indicate a general plasticity in the behavioural but not physiological aspects of energy acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号