首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Pelet  J Curran    D Kolakofsky 《The EMBO journal》1991,10(2):443-448
The P gene of bovine parainfluenza virus 3 (bPIV3) contains two downstream overlapping ORFs, called V and D. By comparison with the mRNA editing sites of other paramyxoviruses, two editing sites were predicted for bPIV3; site a to express the D protein, and site b to express the V protein. Examination of the bPIV3 mRNAs, however, indicates that site b is non-functional whereas site a operates frequently. Insertions at site a give rise to both V and D protein mRNAs, because a very broad distribution of Gs is added when insertions occur. This broad distribution is very different from the editing sites of Sendai virus or SV5, where predominantly one form of edited mRNA containing either a one or two G insertion respectively is created, to access the single overlapping ORF of these viruses. A model is proposed to explain how paramyxoviruses control the range of G insertions on that fraction of the mRNAs where insertions occur. The bPIV3 P gene is unique as far as we know, in that a sizeable portion of the gene expresses all 3 reading frames as protein. bPIV3 apparently does this from a single editing site by removing the constraints which control the number of slippage rounds which take place.  相似文献   

2.
3.
4.
The viral polymerase of influenza virus, a negative-strand RNA virus, is believed to polyadenylate the mRNAs by stuttering at a stretch of five to seven uridine residues which are located close to the 5' ends of the viral RNA templates. However, a mechanism of polyadenylation based on a template-independent synthesis of the poly(A) tail has not been excluded. In this report, we present new evidence showing the inherent ability of the viral polymerase to stutter at the poly(U) stretch of a viral RNA template during RNA replication. Variants which possess 1- to 13-nucleotide-long insertions at the poly(U) stretch have been identified. These results support a stuttering mechanism for the polyadenylation of influenza virus mRNAs.  相似文献   

5.
6.
Two forms of the Sendai virus P/C mRNA have been predicted: one an exact copy of the viral genome, and the other with a single G insertion within a run of three G's. We directly cloned the mRNA or portions of it containing the insertion site and screened the resulting colonies with oligonucleotides that could distinguish the presence of three or four G's at this position. We found that 31% of the mRNAs did in fact contain the predicted insertion, whereas the viral genomes contained no heterogeneity at this position. A smaller fraction (7%) of the mRNA contained two to eight G's inserted at this position. The insertions also took place during RNA synthesis in vitro with purified virions but were not detected when the mRNA was expressed in vivo via a vaccinia virus recombinant. When the Sendai virus- and vaccinia virus-derived P/C mRNAs were coexpressed in the same cells under conditions in which each could be distinguished, those from the Sendai genome were altered as before, but those from the vaccinia virus genome remained unaltered. The activity that alters the mRNA is therefore likely to be coded for by the virus and cannot function in trans.  相似文献   

7.
The complete nucleotide sequence of the phosphoprotein (P) gene of the Yamagata-1 strain of a defective subacute sclerosing panencephalitis (SSPE) virus was determined. Comparison with the P gene of the Edmonston strain of measles virus (MV) revealed 44 differences of which 23 nucleotides substitutions were identical with those revealed between other SSPE viruses and MV (Cattaneo et al. (1989) Virology 173, 415-425). The consensus sequence of the G insertion site was completely conserved, whereas mRNAs with one or three non-templated G residue insertions were found in addition to the mRNA of the exact genome copy. As a result of the frameshift downstream of the site of G insertion, the cysteine-rich V protein was predicted from the one G-inserted mRNA besides the P and C proteins predicted from the genome-copied mRNA.  相似文献   

8.
9.
Subgenomic (sg) mRNAs are synthesized by (+)-strand RNA viruses to allow for efficient translation of products encoded 3' in their genomes. This strategy also provides a means for regulating the expression of such products via modulation of sg mRNA accumulation. We have studied the mechanism by which sg mRNAs levels are controlled in tomato bushy stunt virus, a small (+)-strand RNA virus which synthesizes two sg mRNAs during infections. Neither the viral capsid nor movement proteins were found to play any significant role in modulating the accumulation levels of either sg mRNA. Deletion analysis did, however, identify a 12-nt-long RNA sequence located approximately 1,000 nt upstream from the site of initiation of sg mRNA2 synthesis that was required specifically for accumulation of sg mRNA2. Further analysis revealed a potential base-pairing interaction between this sequence and a sequence located just 5' to the site of initiation for sg mRNA2 synthesis. Mutant genomes in which this interaction was either disrupted or maintained were analyzed and the results indicated a positive correlation between the predicted stability of the base-pairing interaction and the efficiency of sg mRNA2 accumulation. The functional significance of the long-distance interaction was further supported by phylogenetic sequence analysis which revealed conservation of base-pairing interactions of similar stability and relative position in the genomes of different tombusviruses. It is proposed that the upstream sequence represents a cis-acting RNA element which facilitates sg mRNA accumulation by promoting efficient synthesis of sg mRNA2 via a long-distance RNA-RNA interaction.  相似文献   

10.
Measles virus editing provides an additional cysteine-rich protein   总被引:28,自引:0,他引:28  
R Cattaneo  K Kaelin  K Baczko  M A Billeter 《Cell》1989,56(5):759-764
  相似文献   

11.
The steady-state levels of mRNAs for the G-proteins Gi alpha 2, Go alpha, and the G beta-subunits common to each were established in rat adipose, heart and liver. Uniformly-radiolabeled, single-stranded antisense probes were constructed from cDNAs or assembled from oligonucleotides. Direct comparison of the steady-state levels of the G-protein mRNAs was performed under identical assay conditions, and on a molar basis. In adipose, liver and heart, Gs alpha mRNA was more abundant than mRNA for Go alpha, Gi alpha, and G beta. In adipose tissue, mRNA levels were as follows: 19.4, 7.6, 7.0, and 2.3 amol mRNA per micrograms total cellular RNA for Gs alpha, G beta, Gi alpha 2, and Go alpha, respectively. In heart Gs alpha mRNA was less abundant than in adipose, but the relative trend among the G-protein subunits was the same. In liver, G beta mRNA was more abundant than either Go alpha or Gi alpha 2. Go alpha mRNA levels ranged from 1.2 to 2.3 amol/micrograms total RNA in liver and adipose, respectively. The present work demonstrates the many advantages of this strategy when applied to the study of a family of homologous, low-abundance proteins and establishes for the first time the molar levels of Gi alpha 2, Gs alpha, Go alpha, and G beta-subunit mRNAs in several mammalian tissues.  相似文献   

12.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

13.
14.
Guanylic acid modified variously with methyl groups on base or sugar moieties were synthesized chemically and their inhibitory effects on protein synthesis were tesetd in a wheat germ cell-free system using mRNAs from cytoplasmic polyhedrosis virus and tobacco mosaic virus. The confronting dinucleotide m7G5' pppA that corresponds to the most simple 'cap' structure of an eukaryotic mRNA is a strong inhibitor of protein synthesis, but non-methylated G5' pppA or G5' ppA is not inhibitory. The strong inhibitory effect is observed only by 7-methylguanylic acid (pm7G). Among 11 derivatives of pG, the most effective inhibitors are methylated at the 7-position. Further methylation at the other position sometimes cancels the inhibitory effect. Although pm7G carries a positively charged base, other nucleotides which carry a plus charged base (1-methyladenylic acid and 2-methylthio-7-methylinosinic acid) were not inhibitory. Thus, methylation at the 7-position on guanylic acid is specifically required for the inhibitory effect. Addition of pm7G was inhibitory for the formation of the initiation complex for eukaryotic protein synthesis. These results suggest that the 'cap' component containing 7-methylguanylic acid in viral mRNA participates during protein synthesis, especially in its initial steps. Protein synthesis in a bacterial cell-free system was not inhibited by addition of m7GpppA or pm7G when either TMV RNA or phage MS2 RNA was used as an mRNA.  相似文献   

15.
Effects of herpes simplex virus on mRNA stability.   总被引:28,自引:24,他引:4       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
The transposable element Tc1 is responsible for most spontaneous mutations that occur in many Caenorhabditis elegans strains. We analyzed the abundance and sequence of mRNAs expressed from five different Tc1 insertions within either hlh-1 (a MyoD homolog) or unc-54 (a myosin heavy chain gene). Each of the mutants expresses substantial quantities of mature mRNA in which most or all of Tc1 has been removed by splicing. Such mRNAs contain small insertions of Tc1 sequences and/or deletions of target gene sequences at the resulting spliced junctions. Most of these mutant mRNAs do not contain premature stop codons, and many are translated in frame to produce proteins that are functional in vivo. The number and variety of splice sites used to remove Tc1 from these mutant pre-mRNAs are remarkable. Two-thirds of the Tc1-containing introns removed from hlh-1 and unc-54 lack either the 5'-GU or AG-3' dinucleotides typically found at the termini of eukaryotic introns. We conclude that splicing to remove Tc1 from mutant pre-mRNAs allows many Tc1 insertions to be phenotypically silent. Such mRNA processing may help Tc1 escape negative selection.  相似文献   

20.
Human pregnancy-specific beta 1-glycoprotein (PS beta G) is a polymorphic placental protein which shows strong sequence similarity with the oncofetal protein, carcinoembryonic antigen. To better understand the role of PS beta G in pregnancy, we examined its synthesis and regulation in placental fibroblasts, which had been shown to express the PS beta G gene. The major placental PS beta G is a 72-kDa glycoprotein, while the major fibroblast PS beta G is a 62-kDa species. Administration of sodium butyrate to these fibroblasts slightly stimulated the synthesis of the 62-kDa species but markedly increased the production of two additional PS beta Gs of 72 and 48 kDa. The similarity between the PS beta Gs synthesized by butyrate-treated fibroblasts and human placenta was confirmed by cell-free protein synthesis. Poly(A)+ RNA from butyrate-treated fibroblasts and placenta directed the synthesis of two polypeptides of 48 and 36 kDa, which form the polypeptide backbone of the 72- and 48-kDa glycoproteins. Moreover, the predicted molecular weights of PS beta Gs encoded by the two types of PS beta G cDNA clones were 48,000 and 36,000. Most PS beta G cDNAs identified to date, including the three cDNAs (PSG16, PSG93, and PSG95) isolated in this laboratory, share strong sequence similarity at the 5' region (designated PSG-5') but differ in sequences at their 3' regions. The PSG-5', PSG93-specific, PSG16/PSG93-3', and PSG95-3' probes, which identify the majority of PS beta G mRNAs, hybridized with three PS beta G mRNAs of 2.3, 2.2, and 1.7 kilobases from placental fibroblasts. Butyrate increased the steady-state levels of all three mRNAs. Ribonuclease protection analysis showed that butyrate increased the PS beta G mRNAs containing the PSG-5' or PSG93-specific sequence to approximately 20% of human placental levels. However, unlike human term placenta, which predominantly expressed PS beta G mRNAs with 3'-sequences similar to PSG16/PSG93, the butyrate-treated fibroblasts expressed roughly equal levels of PS beta G mRNAs with the PSG16/PSG93-3' and PSG95-3' ends. All PS beta G cDNAs identified encode proteins with distinct carboxyl termini, suggesting that the composition of the 72-kDa species in placenta and butyrate-treated fibroblasts is likely to be different. Placental fibroblasts provide a unique model for the study of the mechanisms responsible for the differential expression of the PS beta G gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号