首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome f/b6 and ATP synthetase (CF0-CF1) complexes from spinach chloroplasts have been reconstituted into liposomes prepared from soybean phospholipids and purified spinach galactolipids. Freeze- fracture analysis revealed homogeneous populations of particles spanning the lipid bilayers with their elongated axes perpendicular to the membrane plane. The lipid composition of the liposomes had no effect on the size of the reconstituted complexes, the average diameter of cytochrome f/b6 complex measuring 8.5 nm, and of the CF0 base piece of the ATP synthetase, 9.5 nm. When reconstituted cytochrome f/b6 complexes were cross-linked by means of antibodies prepared against the whole complex, the thus aggregated particles formed either hexagonal or square arrays. In both instances the center-to-center spacing of the particles was 8.3 nm, thereby suggesting that this value could be closer to the real diameter of the complexes than the one obtained from measuring individual particles. Assuming an ellipsoidal shape for these particles, and using a measured height of 11 nm, a molecular weight of approximately 280,000 could be calculated for the reconstituted cytochrome f/b6 complex, consistent with a dimeric configuration. In many instances the crystalline sheets of antibody-aggregated cytochrome f/b6 complexes were found to be free in the buffer solution; apparently the antibody-induced strains caused the sheet-like aggregates to pop out of the liposomal membranes. Agglutination studies of inside-out and right-side-out thylakoid vesicles revealed the antigenic determinants of the cytochrome f and cytochrome b6 polypeptides to be exposed on the inner thylakoid surface and to be present in stacked and unstacked membrane regions. The molecular weight calculated from the size of freeze-fractured CF0 base pieces was over twice the value determined by x-ray scattering data. This discrepancy may be caused by significant lipid domains within the base piece, or by an unusual fracturing behavior of the base piece in reconstituted liposomes.  相似文献   

2.
Light-harvesting II complexes (LHCII) and photosystem II core complexes (PSIICC) were isolated from spinach (Spinacia oleracea L.) and reconstituted into phosphatidylcholine liposomes and, under heat stress, PSIICC-LHCII proteoliposomes were found to exhibit significantly higher oxygen evolution activity than PSIICC proteoliposomes lacking LHCII. In the presence of LHCII, the temperature of a 10-min heat stress that caused semi-inactivation of oxygen-evolving activity in these liposomes increased from 34 to ~37°C and the total inactivation temperature increased from ~50 to ~60°C. Moreover, with heat stress, decreases in the absorbance and fluorescence spectra of PSIICC-LHCII proteoliposomes were smaller than in LHCII-lacking PSIICC proteoliposomes. These results demonstrated that reconstitution of PSII into liposomes with LHCII increased the antenna size and light harvesting cross-section of PSII and thus, under heat stress, enhanced PSII photochemical activity and thermal stability.  相似文献   

3.
4.
Summary— The molecular organization of the thylakoids of Cryptomonas rufescens was studied by immunoelectron microscopy employing antibodies against photosystem (PS)-I and two PS-II antenna proteins. The PS-I complex and the 19-kDa chlorophyll a/c light-harvesting (LH) protein are both localized along the length of the thylakoid membranes. The external membranes of the paired thylakoids are enriched in PS-I whereas the chlorophyll a/c LH protein is more concentrated in the internal or appressed membranes. However, unlike the situation in higher plants and Chlamydomonas, there is not a marked asymmetry in the concentration of PS-I and chorophyll a/c LH protein in the two types of membranes. Double labelling studies of sections and isolated PE-PS-II particles with anti-phycoerythrin and anti-LH confirmed that phycoerythrin is localized in the thylakoid lumen and that this pigment exists in two forms, a fraction closely associated with the thylakoid membranes and another fraction free in the lumen. These results confirm the uniqueness of cryptomonad thylakoids.  相似文献   

5.
Chlorophyll fluorescence quenching can be stimulated in vitro in purified photosystem II antenna complexes. It has been shown to resemble nonphotochemical quenching observed in isolated chloroplasts and leaves in several important respects, providing a model system for study of the mechanism of photoprotective energy dissipation. The effect of temperature on the rate of quenching in trimeric and monomeric antenna complexes revealed the presence of two temperature-dependent processes with different activation energies, one between approximately 15 and 35 degrees C and another between approximately 40 and 60 degrees C. The temperature of the transition between the two phases was higher for trimers than for monomers. Throughout this temperature range, the quenching was almost completely reversible, the protein CD was unchanged, and pigment binding was maintained. The activation energy for the low temperature phase was consistent with local rearrangements of pigments within some of the protein domains, whereas the higher temperature phase seemed to arise from large scale conformational transitions. For both phases, there was a strong linear correlation between the quenching rate and the appearance of an absorption band at 685 nm. In addition, quenching was correlated with a loss of CD at approximately 495 nm from Lutein 1 and at 680 nm from chlorophylls a1 and a2, the terminal emitters. The results obtained indicate that quenching of chlorophyll fluorescence in antenna complexes is brought about by perturbation of the lutein 1/chlorophyll a1/chlorophyll a2 locus, forming a poorly fluorescing chlorophyll associate, either a dimer or an excimer.  相似文献   

6.
7.
Reconstitution of rabbit thrombomodulin into phospholipid vesicles   总被引:9,自引:0,他引:9  
The influence of phospholipid on thrombin-thrombomodulin-catalyzed activation of protein C has been studied by incorporating thrombomodulin into vesicles by dialysis from octyl glucoside-phospholipid mixtures. Thrombomodulin was incorporated into vesicles ranging from neutral (100% phosphatidylcholine) to highly charged (30% phosphatidylserine and 70% phosphatidylcholine). Thrombomodulin is randomly oriented in vesicles of different phospholipid composition. Incorporation of thrombomodulin into phosphatidylcholine, with or without phosphatidylserine, alters the Ca2+ concentration dependence of protein C activation. Soluble thrombomodulin showed a half-maximal rate of activation at 580 microM Ca2+, whereas half-maximal rates of activation of liposome-reconstituted thrombomodulin were obtained between 500 microM Ca2+ and 2 mM Ca2+, depending on the composition (protein:phospholipid) of the liposomes. The Ca2+ dependence of protein C activation fits a simple hyperbola for the soluble activator, while the Ca2+ dependence of the membrane-associated complex is distinctly sigmoidal with a Hill coefficient greater than 2.4. In contrast, the Ca2+ dependence of gamma-carboxyglutamic acid (Gla) domainless protein C activation is unchanged by membrane reconstitution (1/2 max = 53 +/- 10 microM) and fits a simple rectangular hyperbola. Incorporation of thrombomodulin into pure phosphatidylcholine vesicles reduces the Km for protein C from 7.6 +/- 2 to 0.7 +/- 0.2 microM. Increasing phosphatidylserine to 20% decreased the Km for protein C further to 0.1 +/- 0.02 microM. Membrane incorporation has no influence on the activation of protein C from which the Gla residues are removed proteolytically (Km = 6.4 +/- 0.5 microM). The Km for protein C observed on endothelial cells is more similar to the Km observed when thrombomodulin (TM) is incorporated into pure phosphatidylcholine vesicles than into negatively charged vesicles, suggesting that the protein C-binding site on endothelial cells does not involve negatively charged phospholipids. In support of this concept, we observed that prothrombin and fragment 1, which bind to negatively charged phospholipids, do not inhibit protein C activation on endothelial cells or TM incorporated into phosphatidylcholine vesicles, but do inhibit when TM is incorporated into phosphatidylcholine:phosphatidylserine vesicles. These studies suggest that neutral phospholipids lead to exposure of a site, probably on thrombomodulin, capable of recognizing the Gla domain of protein C.  相似文献   

8.
We present an extended analysis of the organization of green plant photosystem II and its associated light-harvesting antenna using electron microscopy and image analysis. The analysis is based on a large dataset of 16 600 projections of negatively stained PSII-LHCII supercomplexes and megacomplexes prepared by means of three different pretreatments. In addition to our previous work on this system [Boekema, E.J., van Roon, H., Calkoen, F., Bassi, R. and Dekker, J.P. (1999) Biochemistry 38, 2233-2239], the following results were obtained. The rotational orientation of trimeric LHCII at the S, M and L binding positions was determined. It was found that compared to the S trimer, the M and L trimers are rotationally shifted by about -20 degrees and -50 degrees, respectively. The number of projections with empty CP29, CP26 and CP24 binding sites was found to be about 0, 18 and 4%, respectively. We suggest that CP26 and CP24 are not required for the binding of trimeric LHCII at any of the three binding positions. A new type of megacomplex was observed with a characteristic windmill-like shape. This type III megacomplex consists of two C2S2 supercomplexes connected at their CP26 tips. Structural variation in the region of the central dimeric photosystem II complex was found to occur at one specific position near the periphery of the complex. We attribute this variation to the partial absence of an extrinsic polypeptide or one or more small intrinsic membrane proteins.  相似文献   

9.
Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data.  相似文献   

10.
Plant photosynthesis relies on the capacity of chlorophylls and carotenoids to absorb light. One of the roles of carotenoids is to harvest green-blue light and transfer the excitation energy to the chlorophylls. The corresponding dynamics were investigated here for the first time, to our knowledge, in the CP26 and CP24 minor antenna complexes. The results for the two complexes differ substantially. In CP26 fast transfer (80 fs) occurs from the carotenoid S2 state to chlorophylls a absorbing at 675 and 678 nm, whereas transfer from the hot S1 state to the lowest energy chlorophylls is observed in <1 ps. In CP24, energy transfer from the S2 state leads in 80 fs to the population of chlorophylls b and high-energy chlorophylls a absorbing at 670 nm, whereas the low-energy chlorophylls a are populated only in several picoseconds. The results suggest that CP26 has a structural and functional organization similar to that of LHCII, whereas CP24 differs substantially from the other Lhc complexes, especially regarding the lutein L1 binding domain. No energy transfer from the carotenoid S1 state to chlorophylls was observed in either complex, suggesting that this state is energetically below the chlorophyll Qy state and therefore may play a role in the quenching of chlorophyll excitations.  相似文献   

11.
12.
Allosteric regulation of the light-harvesting system of photosystem II   总被引:9,自引:0,他引:9  
Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid delta pH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonation-dependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.  相似文献   

13.
Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It utilizes light for photochemical energy conversion, and is heavily involved in the regulation of the energy flow. We investigated the structural organization of photosystem II and its associated light-harvesting antenna by electron microscopy, multivariate statistical analysis, and classification procedures on partially solubilized photosystem II membranes from spinach. Observation by electron microscopy shortly after a mild disruption of freshly prepared membranes with the detergent n-dodecyl-alpha,D-maltoside revealed the presence of several large supramolecular complexes. In addition to the previously reported supercomplexes [Boekema, E. J., van Roon, H., and Dekker, J. P. (1998) FEBS Lett. 424, 95-99], we observed complexes with the major trimeric chlorophyll a/b protein (LHCII) in a third, L-type of binding position (C2S2M0-2L1-2), and two different types of megacomplexes, both identified as dimeric associations of supercomplexes with LHCII in two types of binding sites (C4S4M2-4). We conclude that the association of photosystem II and its associated light-harvesting antenna is intrinsically heterogeneous, and that the minor CP26 and CP24 proteins play a crucial role in the supramolecular organization of the complete photosystem. We suggest that different types of organization form the structural basis for photosystem II to specifically react to changing light and stress conditions, by providing different routes of excitation energy transfer.  相似文献   

14.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland).  相似文献   

15.
The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.  相似文献   

16.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

17.
The major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) play important roles in energy balance of thylakoid membrane. They harvest solar energy, transfer the energy to the reaction center under normal light condition and dissipate excess excitation energy under strong light condition. Many bamboo species could grow very fast even under extremely changing light conditions. In order to explain whether LHCIIb in bamboo contributes to this specific characteristic, the spectroscopic features, the capacity of forming homotrimers and structural stabilities of different isoforms (Lhcb1-3) were investigated. The apoproteins of the three isoforms of LHCIIb in bamboo are overexpressed in vitro and successfully refolded with thylakoid pigments. The sequences of Lhcb1 and Lhcb2 are similar and they are capable of forming homotrimer, while Lhcb3 lacks 10 residues in the N terminus and can not form the homotrimeric structure. The pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different reconstituted Lhcbs reveal that Lhcb3 differs strongly from Lhcb1 and Lhcb2. Lhcb3 possesses the lowest Qy transition energy and the highest thermostability. Lhcb2 is the most stable monomer under strong illumination among all the isoforms. These results suggest that in spite of small differences, different Lhcb isoforms in bamboo possess similar characteristics as those in other higher plants.  相似文献   

18.
19.
Restoration of electron flow and oxygen-evolution quantity of Mn-depleted photosystem 2 (PS2) was performed with using synthetic manganese complexes Mn(im)6Cl2, Mn(im)2Cl2, Mn(5-Clsalgy)2, and Mn(salgy)2 instead of original manganese cluster for reconstruction of electron transport and oxygen evolution.  相似文献   

20.
Three isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different isoforms were analysed. Comparison of their spectroscopic properties and structural stabilities revealed that Lhcb3 differed strongly from Lhcb1 and Lhcb2 in both respects. It showed the lowest Qy transition energy, with its reddest absorption about 2 nm red-shifted, and the highest photostability under strong illuminations. Among the three isoforms, Lhcb 2 showed lowest thermal stability regarding energy transfer from Chl b to Chl a in the complexes, which implies that the main function of Lhcb 2 under high temperature stress is not the energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号