首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

2.
逆转录病毒载体介导诱导型NO合酶在神经细胞中表达   总被引:4,自引:0,他引:4  
为了深入研究诱导型一氧化氮合酶基因表达产物在阿片耐受和依赖中作用,采用脂质体介导基因转染技术,将iNOS cDNA重组逆转录病毒载体导入NG108-15神经细胞,获得G418抗性克隆,命名为NG-LNCXiNOS细胞。DNA印迹杂交,PCR扩增及RT-PCR和蛋白质免疫印迹杂交分析,证实NG-LNCXiNOS细胞有外源iNOS基因整合,转录和表达;NADPH黄递酶(NADPH diaphorase  相似文献   

3.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

4.
Abstract: In the present study we investigated uptake of the nitric oxide (NO) synthase inhibitors N G-methyl- l -arginine and N G-nitro- l -arginine by the mouse neuroblastoma × rat glioma hybrid cell line NG108-15. Uptake of N G-methyl- l -arginine was characterized by biphasic kinetics ( K m1 = 8 µmol/L, V max1 = 0.09 nmol × mg−1× min−1; K m2 = 229 µmol/L, V max2 = 2.9 nmol × mg−1× min−1) and was inhibited by basic but not by neutral amino acids. Uptake of N G-nitro- l -arginine followed Michaelis-Menten kinetics ( K m = 265 µmol/L, V max = 12.8 ± 0.86 nmol × mg−1× min−1) and was selectively inhibited by aromatic and branched chain amino acids. Further characterization of the transport systems revealed that uptake of N G-methyl- l -arginine is mediated by system y+, whereas systems L and T account for the transport of N G-nitro- l -arginine. In agreement with these data on uptake of the inhibitors, l -lysine and l -ornithine antagonized the inhibitory effects of N G-methyl- l -arginine on bradykinin-induced intracellular cyclic GMP accumulation, whereas l -tryptophan, l -phenylalanine, and l -leucine interfered with the effects of N G-nitro- l -arginine. These data suggest that rates of uptake are limiting for the biological effects of NO synthase inhibitors.  相似文献   

5.
Abstract: In this work, we have studied the effects of pure nitric oxide (NO) on the regulation of catecholamine (CA) secretion by chromaffin cells, as well as the possible presence of its synthesizing enzyme l -arginine:NO synthase (NOS) in these cells. Our results show that NO produces a large stimulation of basal CA secretion. This effect was calcium- and concentration-dependent (EC50 = 64 ± 8 µ M ) and was not due to nonspecific damage of the tissue by NO. NO also modulates the CA secretion evoked by nicotine in a dose-dependent manner. Although it has a stimulatory effect on the CA secretion evoked by low doses of nicotine (<3 µ M ; EC50 = 16 ± 3 µ M ), it produces a dose-dependent inhibition of the CA secretion induced by high doses of nicotine (≥30 µ M ; IC50 = 52 ± 6 µ M ). The mechanism by which NO modulates CA secretion seems to be through the increase in the cyclic GMP levels, because there was a close correlation between the CA secretion and the cyclic GMP levels. The presence of a specific activity of NOS in chromaffin cells has been demonstrated by two independent methods: release of [14C]citruiline from [14C]arginine and formation of an NO-hemoglobin complex. NOS activity was about 0.5 pmol/min/mg of protein. It was calcium- and mainly calmodulin-dependent and could be specifically blocked by the NOS inhibitor N -methyl- l -arginine. These results suggest that NO could be an important intracellular messenger in the regulation of neurosecretion in chromaffin cells.  相似文献   

6.
Abstract: Treatment of rat cerebellar astrocyte-enriched primary cultures with dexamethasone enhances the nitric oxide-dependent cyclic GMP formation induced by noradrenaline in a time-(>6 h) and concentration-dependent manner (half-maximal effect at 1 n M ). Stimulation of cyclic GMP formation by the calcium ionophore A23187 is similarly enhanced. In contrast, cyclic GMP accumulation in cells treated with lipopolysaccharide is inhibited by dexamethasone. The potentiating effect of dexamethasone is prevented by the protein synthesis inhibitor cycloheximide and is not due to increased soluble guanylate cyclase activity. Agonist stimulation of [3H]arginine to [3H]citrulline conversion is enhanced by dexamethasone in astrocytes but not in cerebellar granule cells. These results indicate that glucocorticoids may up-regulate astroglial calcium-dependent nitric oxide synthase while preventing expression of inducible nitric oxide synthase and are the first report of a differential long-term regulation of the expression of neuronal and astroglial constitutive nitric oxide synthase activities.  相似文献   

7.
Abstract: The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated. Incubation of rat cerebellar slices with the specific metabotropic glutamate receptor agonist, (±)-1-aminocyclopentane- trans -1,3-dicarboxylate ( trans -ACPD) increased cyclic GMP concentration two-fold. The increase was dose-dependently blocked by the protein kinase inhibitors staurosporine and calphostin C. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased cyclic GMP concentration without glutamate receptor activation. The cyclic GMP increases induced by PMA and trans -ACPD were independent of extracellular calcium blocked by N ω-nitro- l -arginine, a specific NOS inhibitor, and were not additive. Measurement of citrulline formation in cerebellar slices confirmed that NOS was activated by trans -ACPD and the activation was blocked by calphostin C. These results suggest that metabotropic glutamate receptor activates NOS through PKC. The calcium dependency of NOS activation was assessed in slices incubated with PMA and okadaic acid. NOS in both PMA-treated and untreated slices had similar activities at 100 n M free calcium, whereas at 25–70 n M free calcium, NOS in PMA-treated slices was more active than that in untreated slices. These results suggest that PKC regulates NO release in resting neurons by modulating the sensitivity of NOS at low calcium concentrations.  相似文献   

8.
Abstract: Neuronal nitric oxide synthase (NOS) is considered to be involved in the pathogenesis of ischemic brain damage. In the present study, the effect of a novel neuroprotective phenylpyrimidine derivative, 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), on depolarization-stimulated NOS activity was examined in cultured neurons of mouse cerebral cortex. Various depolarizing stimuli such as veratridine, KCl, and N -methyl- d -aspartate increased the NOS activity determined by cyclic GMP formation. NS-7 concentration-dependently inhibited both the veratridine- and KCl-induced NOS activation with IC50 values of 9.3 and 9.6 µ M , respectively. The reversal of KCl-evoked NOS activity by NS-7 was also observed under blockade of both ionotropic glutamate receptors and the Na+ channel with MK-801, 6-cyano-7-nitroquinoxaline-2,3-dione, and tetrodotoxin. In contrast, NS-7, even at 100 µ M , did not affect N -methyl- d -aspartate-stimulated NOS activity, nor did it have any influence on NOS activity determined in the soluble fraction of rat hippocampus. Because NS-7 has already been shown to block both Na+ and Ca2+ channels, the present findings suggest that this compound inhibits depolarization-induced NOS activation by reducing Ca2+ influx through blockade of Na+ and Ca2+ channels in primary neuronal culture.  相似文献   

9.
Abstract: In contrast to the predominantly participate, Ca2+/calmodulin-dependent nitric oxide (NO) synthase in endothelial cells, the corresponding neuronal isoenzyme is considered to be mainly soluble, presumably owing to the lack of a posttranslational myristoylation. However, preliminary findings from this and other laboratories suggest that a substantial portion of the neuronal NO synthase activity may in fact be membrane bound. We have therefore investigated the distribution of this enzyme among subcellular fractions of the rat and rabbit cerebellum in more detail. Up to 60% of the total NO synthase activity was found in the particulate fraction and, according to density gradient ultracentrifugation, associated mainly with the endoplasmic reticulum fraction. There was no apparent difference between the soluble and particulate enzymes with respect to their specific activity, Ca2+ and pH dependency, inhibitor sensitivity, or immunoreactivity, suggesting that both rat and rabbit cerebella contain a single Ca2+/calmodulin-dependent NO synthase. The inhibition by the cytochrome P450 inhibitor SKF-525A of the NO synthase activity in these subcellular fractions (IC50= 90 μ M ) and the fact that mammalian cytochrome P450 enzymes are endoplasmic reticulum-bound proteins support the notion that the cerebellar NO synthase is a cytochrome P450-type hemoprotein. Moreover, the aforementioned findings suggest that posttranslational myristoylation may not be the only factor determining the intracellular localization of NO synthase.  相似文献   

10.
Abstract: Muscarinic receptor-mediated cyclic GMP formation and release of nitric oxide (NO) (or a precursor thereof) were compared in mouse neuroblastoma N1E-115 cells. [3H]Cyclic GMP was assayed in cells prelabeled with [3H]guanine. Release of NO upon the addition of muscarinic agonists to unlabeled neuroblastoma cells (NO donor cells) was quantitated indirectly by its ability to increase the [3H]cyclic GMP level in labeled cells whose muscarinic receptors were inactivated by irreversible alkylation (NO detector cells). Carbachol increased NO release in a concentration-dependent manner, with half-maximal stimulation at 173 μ M (compared to 96 μ M for direct activation of cyclic GMP formation). The maximal effect of carbachol in stimulating release of NO when measured indirectly was lower than that in elevating [3H]cyclic GMP directly in donor cells. Hemoglobin was more effective in blocking the actions of released NO than in attenuating direct stimulation of [3H]cyclic GMP synthesis. There was a good correlation between the ability of a series of muscarinic agonists to release NO or to activate [3H]cyclic GMP formation directly, and the potency of pirenzepine in inhibiting the two responses. Furthermore, there was a similar magnitude of desensitization of both responses by prolonged receptor activation or stimulation of protein kinase C. NO release was also regulated in relation to the cellular growth phase. A model is proposed in which a fraction of NO generated upon receptor activation does not diffuse extracellularly and stimulates cyclic GMP synthesis within the same cell where it is formed (locally acting NO). The remainder of NO that is extruded extracellularly might travel to neighboring cells (neurotransmitter NO) or might be taken back into the cells of origin (homing NO).  相似文献   

11.
软体动物的一氧化氮及其合酶的研究进展   总被引:6,自引:0,他引:6  
一氧化氮作为一种重要的信息分子,参与调节软体动物的嗅觉、运动、取食、机体防御及学习行为。本文从生理、生化、形态定位以及信号转导几方面综述了有关软体动物一氧化氮及其合酶的最新研究进展。  相似文献   

12.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

13.
Abstract: Mitochondrial inhibitors such as malonate are potent neurotoxins in vivo. Intrastriatal injections of malonate result in neuronal damage reminiscent of "excitotoxic" lesions produced by compounds that activate NMDA receptors. Although the mechanism of cell death produced by malonate is uncertain, overactivation of NMDA receptors may be involved; pretreatment of animals with NMDA antagonists provides neuroprotection against malonate lesions. NMDA receptor activation stimulates the enzyme nitric oxide (NO) synthase (NOS). Elevated tissue levels of NO may generate highly reactive intermediates that impair mitochondrial function. We hypothesized that NO may be a mediator of malonate toxicity. We investigated whether in vivo inhibition of NO production by the NOS inhibitor N ω-nitro- l -arginine (NLA) would attenuate lesions produced by intrastriatal injections of malonate. We found that systemic injections of 3 mg/kg of NLA significantly reduced the extent of histologic damage elicited by intrastriatal injections of 1.5 µmol of malonate in adult rats.  相似文献   

14.
Abstract: In this study, the interaction between 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) in [3H]adenine-or [3H]-guanine-prelabelled adult guinea-pig cerebellar slices was investigated. Basal levels of [3H]cGMP were enhanced by forskolin, although no plateau was reached over the concentration range tested (0.1-100 μM). However, forskolin elicited a concentration-dependent, saturable potentiation of sodium nitroprusside (SNP)-stimulated [3H]cGMP accumulation (forskolin EC50 value of 0.98 β 0.23 μM; 10 μM forskolin produced a 1.8 β 0.3-fold potentiation of the SNP response at 2.5 min). The forskolin potentiation was observed at all concentrations of SNP tested (0.001-10 mM). forskolin also elicited a large stimulation of [3H]-cAMP in [3H]adenine-prelabelled guinea-pig cerebellar slices; however, 1,9-dideoxyforskolin failed to elicit either a [3H]cAMP response or a potentiation of the SNP-induced [3H]cGMP response at concentrations up to 100 μM. Pretreatment with oxyhaemoglobin (50 μM) inhibited the response to SNP (1 mM) and forskolin (10 μM), as well as the response evoked by the combination of SNP and forskolih. AG-Nitro-l -arginine (100 μM) inhibited the response to forskolin alone, but did not change the response to SNP or the potentiation induced by forskolin on SNP-induced [3H]cGMP levels. The protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7; 100 μM), staurosporine (10 μM), polymyxin B (100 μM), and Ro 31-8220 (10 μM) had no effect on the [3H]cGMP response to either SNP or the combination of SNP plus forskolin. N6,2′-Dibutyryl cAMP, at concentrations up to 10 mM, was also without effect on [3H]cGMP levels induced by SNP. 3-lso-butyl-1-methylxanthine reproduced the effect of forskolin on SNP-induced [3H]cGMP levels, but a less-than-additive effect was observed when the response to SNP was studied in the presence of forskolin and 3-isobutyl-1-methylxanthine. Taken together, these results infer that crosstalk between cyclic nucleotides takes place in guinea-pig cerebellar slices, and that cAMP may regulate cGMP-mediated responses in this tissue.  相似文献   

15.
16.
为探讨胰岛素对神经细胞中神经型一氧化氮合酶(nNOS)的表达及活性的影响,应用流式细胞术、原位杂交、电子自旋共振等技术方法研究胰岛素对PC12细胞中神经型一氧化氮合酶的影响.胰岛素作用PC12细胞9 h 后,神经型一氧化氮合酶的免疫荧光强度显著升高,且呈浓度依赖关系,其最大效应为对照的(155±13)%(P<0.01, n=3, t-test).加入胰岛素(16 mU/L, 6 h)也能够显著上调nNOS mRNA的表达,为对照的(182±13)%(P<0.01, n=3, t-test).另外加入胰岛素(16 mU/L)作用9 h后,神经型一氧化氮合酶的活性也显著升高,为对照的(167±15)%(P<0.01, n=4, t-test).由上述结果可知,胰岛素对PC12细胞的神经型一氧化氮合酶的表达及活性有上调作用.  相似文献   

17.
早期经验对大鼠脑区一氧化氮合酶活性的影响   总被引:1,自引:0,他引:1  
目的 探讨NO与早期饲养环境所引起脑效应的关系。方法 将断乳大鼠在丰富环境 (EC)和单调环境 (IC)中饲养 30d。环境暴露后通过NADPH -黄递酶组化方法对海马齿状回 (DEN)和大脑皮层NOS活性进行定量测定以及对大鼠进行Morris水迷宫作业训练。结果 EC大鼠与IC大鼠相比 ,海马齿状回 (DEN)和大脑皮层NOS活性明显下降 ,迷宫测试表明EC大鼠的空间认知显著优于IC大鼠。在环境暴露期间隔日注射一氧化氮合酶 (NOS)抑制物L -NAME(50mg/kg) ,未引起EC或IC大鼠认知行为的明显改变 ,但导致DEN和大脑皮层NOS活性的不同改变。结论 NO可能与早期经验脑效应有关。  相似文献   

18.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

19.
Abstract: Several studies suggest that nitric oxide (NO) contributes to cell death following activation of NMDA receptors in cultured cortical, hippocampal, and striatal neurons. In the present study we investigated whether 7-nitroindazole (7-NI), a specific neuronal nitric oxide synthase inhibitor, can block dopaminergic neurotoxicity seen in mice after systemic administration of MPTP. 7-NI dose-dependently protected against MPTP-induced dopamine depletions using two different dosing regimens of MPTP that produced varying degrees of dopamine depletion. At 50 mg/kg of 7-NI there was almost complete protection in both paradigms. Similar effects were seen with MPTP-induced depletions of both homovanillic acid and 3,4-dihydroxyphenylacetic acid. 7-NI had no significant effect on dopamine transport in vitro and on monoamine oxidase B activity both in vitro and in vivo. One mechanism by which NO is thought to mediate its toxicity is by interacting with superoxide radical to form peroxynitrite (ONOO), which then may nitrate tyrosine residues. Consistent with this hypothesis, MPTP neurotoxicity in mice resulted in a significant increase in the concentration of 3-nitrotyrosine, which was attenuated by treatment with 7-NI. Our results suggest that NO plays a role in MPTP neurotoxicity, as well as novel therapeutic strategies for Parkinson's disease.  相似文献   

20.
Induction of Nitric Oxide Synthase in Glial Cells   总被引:28,自引:0,他引:28  
Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16-18 h with lipopolysaccharide (LPS) induced NOS-like activity that was L-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca(2+)-independent and L-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca(2+)-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号