首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a syntheticlethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.  相似文献   

2.
To investigate the contributions of phosphatidylethanolamine to the growth and morphogenesis of the fission yeast Schizosaccharomyces pombe, we have characterized three predicted genes in this organism, designated psd1, psd2, and psd3, encoding phosphatidylserine decarboxylases, which catalyze the conversion of phosphatidylserine to phosphatidylethanolamine in both eukaryotic and prokaryotic organisms. S. pombe mutants carrying deletions in any one or two psd genes are viable in complex rich medium and synthetic defined minimal medium. However, mutants carrying deletions in all three psd genes (psd1-3Δ mutants) grow slowly in rich medium and are inviable in minimal medium, indicating that the psd1 to psd3 gene products share overlapping essential cellular functions. Supplementation of growth media with ethanolamine, which can be converted to phosphatidylethanolamine by the Kennedy pathway, restores growth to psd1-3Δ cells in minimal medium, indicating that phosphatidylethanolamine is essential for S. pombe cell growth. psd1-3Δ cells produce lower levels of phosphatidylethanolamine than wild-type cells, even in medium supplemented with ethanolamine, indicating that the Kennedy pathway can only partially compensate for the loss of phosphatidylserine decarboxylase activity in S. pombe. psd1-3Δ cells appear morphologically indistinguishable from wild-type S. pombe cells in medium supplemented with ethanolamine, but when cultured in nonsupplemented medium, they produce high frequencies of abnormally shaped cells as well as cells exhibiting severe septation defects, including multiple, mispositioned, deformed, and misoriented septa. Our results demonstrate that phosphatidylethanolamine is essential for cell growth and for normal cytokinesis and cellular morphogenesis in S. pombe, and they illustrate the usefulness of this model eukaryote for investigating potentially conserved biological and molecular functions of phosphatidylethanolamine.Phosphatidylethanolamine (PE) is a major phospholipid component of cell membranes in both prokaryotic and eukaryotic organisms (34, 35). There are three distinct pathways for PE synthesis in eukaryotic cells: (i) decarboxylation of phosphatidylserine (PS) via reactions catalyzed by PS decarboxylase (PSD) enzymes; (ii) the CDP-ethanolamine branch of the Kennedy pathway, which converts ethanolamine to PE (34); and (iii) acylation of lysophosphatidylethanolamine (21, 29), a reaction that in the budding yeast Saccharomyces cerevisiae is catalyzed by the enzyme Ale1 (22). Genetic studies have demonstrated that PE is essential for cell viability in S. cerevisiae, although the minimal threshold of PE required for cell growth in this organism can apparently be provided by any of the routes of PE synthesis listed above (22). In contrast, the results of mouse knockout experiments indicate that both PSD- and Kennedy pathway-catalyzed pathways for PE synthesis are essential for embryonic development (9, 28, 35).While PE is present in most, if not all, eukaryotic cell membranes, it is particularly enriched in the membranes of mitochondria (32, 35, 37). Indeed, S. cerevisiae mutants carrying a null mutation in the PSD1 gene, which encodes a mitochondrially localized PSD, exhibit phenotypes indicative of mitochondrial dysfunction, as do cells derived from mouse embryos carrying a disruption of the Psid gene, which encodes a protein highly homologous in structure to S. cerevisiae Psd1 (28, 32). A second PSD enzyme in S. cerevisiae, encoded by the PSD2 gene, is localized to Golgi and vacuolar membranes (33, 37). Consistent with a role in vacuolar function, PE has been implicated in the process of autophagy by genetic studies utilizing S. cerevisiae vacuolar targeting mutants and by studies showing that Atg8, a ubiquitin-like protein required for yeast autophagy, is conjugated to PE, as are several related mammalian proteins (19, 20, 27).Interestingly, studies utilizing a streptavidin-conjugated form of the PE-binding peptide cinnamycin demonstrated that PE is enriched at cell division sites in S. cerevisiae, the fission yeast Schizosaccharomyces pombe, and mammalian cells (6, 11). Moreover, streptavidin-conjugated cinnamycin was shown to inhibit the disassembly of the contractile ring and the completion of cytokinesis in cultures of Chinese hamster ovary cells, and a PE-deficient cell line from the same species was found to arrest growth in cytokinesis with an intact contractile ring (7). PE has also been shown to be enriched at the growing ends of interphase S. pombe cells and at the emerging bud cortex in dividing cells of S. cerevisiae, findings that implicate PE in processes controlling polarized cell growth (11).Although S. pombe mutants defective in enzymes that directly catalyze PE synthesis have not been described previously, we recently showed that mutants carrying a null mutation in the PS synthase gene pps1 are ethanolamine auxotrophs that exhibit severe morphology- and cytokinesis-defective phenotypes under ethanolamine-limited growth conditions (17). These findings implicated PE in the regulation of cellular morphogenesis and cytokinesis in S. pombe. To investigate the biological functions of PE in S. pombe, in particular its contributions to the control of cell morphology and cytokinesis, we have in the present study generated and characterized mutants carrying null mutations in three open reading frames predicted to encode PSD enzymes in this organism. In this paper, we describe the phenotypes of S. pombe PSD-null mutants, which demonstrate central roles for PE in the regulation of cell morphology and cytokinesis in this model eukaryote.  相似文献   

3.
kar9 was originally identified as a bilateral karyogamy mutant, in which the two zygotic nuclei remained widely separated and the cytoplasmic microtubules were misoriented (Kurihara, L.J., C.T. Beh, M. Latterich, R. Schekman, and M.D. Rose. 1994. J. Cell Biol. 126:911–923.). We now report a general defect in nuclear migration and microtubule orientation in kar9 mutants. KAR9 encodes a novel 74-kD protein that is not essential for life. The kar9 mitotic defect was similar to mutations in dhc1/dyn1 (dynein heavy chain gene), jnm1, and act5. kar9Δ dhc1Δ, kar9Δ jnm1Δ, and kar9Δ act5Δ double mutants were synthetically lethal, suggesting that these genes function in partially redundant pathways to carry out nuclear migration. A functional GFP-Kar9p fusion protein localized to a single dot at the tip of the shmoo projection. In mitotic cells, GFP-Kar9p localized to a cortical dot with both mother–daughter asymmetry and cell cycle dependence. In small-budded cells through anaphase, GFP-Kar9p was found at the tip of the growing bud. In telophase and G1 unbudded cells, no localization was observed. By indirect immunofluorescence, cytoplasmic microtubules intersected the GFP-Kar9p dot. Nocodazole experiments demonstrated that Kar9p's cortical localization was microtubule independent. We propose that Kar9p is a component of a cortical adaptor complex that orients cytoplasmic microtubules.  相似文献   

4.
5.
We have identified a mammalian homologue of yeast Ump1p by searching for similar proteins in human and mouse expressed sequence tag (EST) databases. Ump1p is an accessory protein that is required for normal proteasome assembly in yeast (1). A mammalian homologue, which we refer to as “proteassemblin,” is a constituent of proteasome assembly intermediates (preproteasomes), but not fully assembled 20S proteasomes, as is Ump1p in yeast. We also provide evidence that proteassemblin is a constituent of pre-immunoproteasomes that contain the precursor of the interferon-γ-inducible subunit LMP2. By analogy with Ump1p, we hypothesize that proteassemblin is required for normal mammalian proteasome assembly.  相似文献   

6.
SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (Wuestehube et al., 1996. Genetics. 142:393–406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE–associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.Protein transport through the secretory pathway occurs via transport vesicles under the direction of a large set of protein components (Rothman, 1994). The process can be divided into three stages: (a) vesicle budding, (b) vesicle docking, and (c) membrane fusion, with distinct sets of proteins mediating each phase. The budding step involves recruitment of coat proteins to the membrane and culminates with the release of coated vesicles (Schekman and Orci, 1996). The docking reaction is likely to require a set of integral membrane proteins on the vesicle and target membranes, termed v-SNAREs1 and t-SNAREs (vesicle- and target membrane-soluble N-ethylmaleimide–sensitive fusion protein [NSF] attachment protein [SNAP] receptors, respectively), that are thought to confer specificity through their pair-wise interactions (Söllner et al., 1993b ). Small GTP-binding proteins of the rab family also assist in the docking process (Ferro-Novick and Novick, 1993), but their precise function is not known. The fusion step ensues after docking and results in the delivery of the vesicular cargo to the next compartment in the secretory pathway.Vesicular transport from the ER to the Golgi apparatus in the yeast Saccharomyces cerevisiae has been extensively characterized. Transport vesicle budding involves the assembly of the COPII coat, composed of the Sec13p/Sec31p (Pryer et al., 1993; Salama et al., 1993; Barlowe et al., 1994) and Sec23p/Sec24p heterodimers (Hicke and Schekman, 1989; Hicke et al., 1992), under the direction of an integral membrane protein, Sec12p (Nakano et al., 1988; Barlowe and Schekman, 1993), a small GTPase, Sar1p (Nakano and Muramatsu, 1989), and a multidomain protein, Sec16p (Espenshade et al., 1995; Shaywitz et al., 1997). Docking is thought to require a tethering event mediated by Uso1p (Cao et al., 1998), the yeast homologue of mammalian p115 (Barroso et al., 1995; Sapperstein et al., 1995), followed by or concurrent with the interaction of a set of ER to Golgi v-SNAREs, Bet1p, Bos1p, Sec22p (Newman and Ferro-Novick, 1987; Newman et al., 1990; Ossig et al., 1991; Shim et al., 1991; Søgaard et al., 1994) and perhaps Ykt6p (Søgaard et al., 1994; McNew et al., 1997), with the cognate t-SNARE on the Golgi, Sed5p (Hardwick and Pelham, 1992). For some time it was thought that fusion may be initiated by disassembly of the v/t-SNARE complex (Söllner et al., 1993a ) by yeast SNAP, Sec17p, (Griff et al., 1992) and NSF, Sec18p (Eakle et al., 1988; Wilson et al., 1989). However, this concept has been challenged by studies with a yeast system that reconstitutes homotypic vacuolar fusion, which suggests the action of Sec18p is before vesicle docking (Mayer et al., 1996; Mayer and Wickner, 1997). In addition, a prefusion role for NSF has been supported by the recent finding that liposomes bearing SNAREs alone can fuse in the absence of NSF (Weber et al., 1998).Several proteins involved in the regulation of yeast ER to Golgi v/t-SNARE complex assembly have been identified, including Ypt1p, Uso1p, and Sly1p. Ypt1p is a member of the rab family of small GTP-binding proteins that have been identified as important components of almost every stage in the secretory pathway (Ferro-Novick and Novick, 1993). Hydrolysis of GTP by rab-like proteins has been hypothesized to provide the regulatory switch that controls the fidelity of vesicular transport (Bourne, 1988). A second protein, Uso1p (Nakajima et al., 1991), appears to function in the same pathway as Ypt1p (Sapperstein et al., 1996), and both proteins have been demonstrated to be essential for SNARE complex assembly (Søgaard et al., 1994; Sapperstein et al., 1996; Lupashin and Waters, 1997). The third protein, Sly1p, is associated with the t-SNARE Sed5p (Søgaard et al., 1994). SLY1 is an essential gene in yeast (Dascher et al., 1991; Ossig et al., 1991), and Sly1p is required for ER to Golgi transport in vitro (Lupashin et al., 1996) and in vivo (Ossig et al., 1991). However, several lines of evidence, particularly from Sly1p homologues in other organisms, indicate that Sly1p may also function as a negative regulator of v/t-SNARE complex assembly, perhaps by preventing the association of the v- and t-SNAREs (Hosono et al., 1992; Pevsner et al., 1994; Schulze et al., 1994). A dominant allele of SLY1, termed SLY1-20, is capable of suppressing mutations in YPT1 and USO1, including complete deletions (Dascher et al., 1991; Sapperstein et al., 1996). Thus, in the presence of Sly1-20p, two components required for SNARE complex assembly are no longer essential. We have proposed a model (Sapperstein et al., 1996; Lupashin and Waters, 1997) in which Ypt1p and Uso1p function to relieve the inhibitory action of Sly1p on SNARE complex assembly. In this model Sly1-20p can be thought of as a noninhibitory form of SLY1 that renders Ypt1p and Uso1p superfluous.We believe that the ability of SLY1-20 to suppress defects in upstream docking regulators can be used to identify additional components involved in the regulation of vesicular docking. We have undertaken a genetic screen (to be presented elsewhere) to isolate novel components in this pathway which, when mutated, depend upon Sly1-20p for viability. In the course of this work, we discovered that two recently identified mutants, sec34 and sec35, can be suppressed by SLY1-20 and thus satisfy the criterion of our screen. These mutants were isolated in a novel screen to identify components involved in transport at any step between the ER and the trans-Golgi network (i.e., the Kex2p compartment) in yeast (Wuestehube et al., 1996). Both sec34 and sec35 accumulate the core-glycosylated form of secretory proteins at the nonpermissive temperature, indicating a block in ER to Golgi transport. Furthermore, electron microscopy indicated that both sec34 and sec35 accumulate numerous vesicles upon shift to the restrictive temperature (Wuestehube et al., 1996), a hallmark of genes whose protein products are involved in the docking or fusion phase of transport (Kaiser and Schekman, 1990). In this report we describe the cloning of SEC35 and analysis of its genetic interactions with other secretory genes. Strong genetic interaction between SEC35 and SLY1, YPT1, and USO1 suggests that Sec35p may function in vesicle docking. To test this possibility, we devised an in vitro transport assay that depends on the addition of purified Sec35p and Uso1p. Vesicles synthesized in the absence of functional Sec35p do not fuse with the Golgi compartment and remain as freely diffusible intermediates. Upon addition of Sec35p and Uso1p, vesicles dock to the Golgi and proceed to membrane fusion. Requirements for Sec35p at the vesicle docking step correlates our genetic experiments with the biochemically distinguishable steps of vesicle docking and membrane fusion.  相似文献   

7.
The gene bb0250 of Borrelia burgdorferi is a homolog of the dedA family, encoding integral inner membrane proteins that are present in nearly all species of bacteria. To date, no precise function has been attributed to any dedA gene. Unlike many bacterial species, such as Escherichia coli, which has eight dedA genes, B. burgdorferi possesses only one, annotated bb0250, providing a unique opportunity to investigate the functions of the dedA family. Here, we show that bb0250 is able to restore normal growth and cell division to a temperature-sensitive E. coli mutant with simultaneous deletions of two dedA genes, yqjA and yghB, and encodes a protein that localizes to the inner membrane of E. coli. The bb0250 gene could be deleted from B. burgdorferi only after introduction of a promoterless bb0250 under the control of an inducible lac promoter, indicating that it is an essential gene in this organism. Growth of the mutant in the absence of isopropyl-β-d-thiogalactopyranoside resulted in cell death, preceded by cell division defects characterized by elongated cells and membrane bulges, demonstrating that bb0250 is required for proper cell division and envelope integrity. Finally, we show that BB0250 depletion leads to imbalanced membrane phospholipid composition in borrelia. These results demonstrate a strong conservation of function of the dedA gene family across diverse species of Gram-negative bacteria and a requirement for this protein family for normal membrane lipid composition and cell division.The dedA family is a highly conserved bacterial gene family encoding inner membrane proteins of unknown function (35). There are more than 2,000 homologs currently found in the NCBI protein database (protein BLAST score versus Escherichia coli DedA of <0.02), and many species of bacteria have multiple homologs. This built-in redundancy has precluded easy genetic analysis. Each of the dedA homologs in E. coli (yqjA, yghB, yabI, yohD, dedA, ydjX, ydjZ, and yqaA) is individually nonessential as the single gene knockouts have been made and are available in the Keio collection (1). Our group has determined that simultaneous deletion of yghB and yqjA from E. coli results in a strain (named BC202; ΔyghB::Kanr ΔyqjA::Tetr) that has abnormal membrane phospholipid composition, does not complete cell division (forming chains of cells), and fails to grow at 42°C (35). YghB and YqjA are proteins of 219 and 220 amino acids, respectively, displaying 61% amino acid identity. The other six E. coli homologs display roughly 25 to 30% amino acid identity with each other and YghB/YqjA.The E. coli mutant BC202 referred to above displays several intriguing phenotypes that reflect important functions for the DedA family. The membrane and cell division defects of BC202 are present at both the permissive and nonpermissive growth temperatures. However, BC202 is not hypersensitive to antibiotics or detergents, likely signifying an intact outer membrane, under permissive growth conditions (35). We have demonstrated that the periplasmic amidases AmiA and AmiC are not exported to the periplasm in E. coli mutant BC202 (31). These amidases are normally exported across the inner membrane via the twin arginine transport (Tat) pathway in E. coli (6), a Sec-independent protein export pathway found in many bacteria and also present in archaea and plants (4, 5, 11, 26). AmiA and AmiC are required for normal cell division and envelope integrity (19). ΔTat mutants also display cell division defects due to loss of amidase export (6, 33). Overexpression of the components of the Tat pathway (TatABC) restores normal cell division and growth to BC202 (31). However, BC202 shares some, but not all, phenotypes with ΔTat and amidase mutants. In spite of this progress, a precise function for these genes remains to be determined.We are interested in determining if the functions of dedA family genes are conserved in diverse bacterial species. The spirochete Borrelia burgdorferi is a Gram-negative pathogen that is the cause of Lyme disease (3, 9, 34). B. burgdorferi has a complex enzootic life cycle where it cycles between tick and vertebrate hosts with unique patterns of gene expression to ensure survival in each host (20, 29). The B. burgdorferi genome has been sequenced and consists of one linear chromosome and 21 linear and circular plasmids (17). Notably, its genome possesses only one dedA family homolog, annotated bb0250, present on the linear chromosome. Since tools for the genetic manipulation of B. burgdorferi are available and because of the lack of genome redundancy of dedA genes in this organism, we sought to examine the function and essentiality of B. burgdorferi bb0250. Here, we show that cloned bb0250 can complement the mutant phenotypes of E. coli mutant BC202 and localizes to the inner membrane in E. coli. Furthermore, we have deleted bb0250 from B. burgdorferi, and we demonstrate that it is an essential gene in this organism. Loss of gene expression from an inducible plasmid results in cell division defects, morphological abnormalities, changes in membrane phospholipid composition, and growth arrest, implying a general role for DedA family membrane proteins in cell division and maintenance of proper membrane composition and function. Intriguingly, these phenotypes are independent of any role these proteins may play in the Tat protein export pathway since the B. burgdorferi genome does not encode homologs of TatABC or any proteins with predicted Tat-dependent signal peptides (12). These results demonstrate conserved and important functions for DedA family inner membrane proteins in bacterial cell physiology.  相似文献   

8.
Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3 + suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in the regulation of Golgi/endosomal trafficking in fission yeast.  相似文献   

9.
10.
Saccharomyces cerevisiae cells lacking the MDM12 gene product display temperature-sensitive growth and possess abnormally large, round mitochondria that are defective for inheritance by daughter buds. Analysis of the wild-type MDM12 gene revealed its product to be a 31-kD polypeptide that is homologous to a protein of the fission yeast Schizosaccharomyces pombe. When expressed in S. cerevisiae, the S. pombe Mdm12p homolog conferred a dominant-negative phenotype of giant mitochondria and aberrant mitochondrial distribution, suggesting partial functional conservation of Mdm12p activity between budding and fission yeast. The S. cerevisiae Mdm12p was localized by indirect immunofluorescence microscopy and by subcellular fractionation and immunodetection to the mitochondrial outer membrane and displayed biochemical properties of an integral membrane protein. Mdm12p is the third mitochondrial outer membrane protein required for normal mitochondrial morphology and distribution to be identified in S. cerevisiae and the first such mitochondrial component that is conserved between two different species.  相似文献   

11.
Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2‐GFP dynamics did not match the pattern of other endocytic proteins. Eng2‐GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3‐YFP, a WASP‐interacting protein, interacted with Eng2 by co‐immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.   相似文献   

12.
Through a screen designed to isolate novel fission yeast genes required for chromosome segregation, we have identified mal3+. The mal3-1 mutation decreased the transmission fidelity of a nonessential minichromosome and altered sensitivity to microtubule-destabilizing drugs. Sequence analysis revealed that the 35-kD Mal3 is a member of an evolutionary conserved protein family. Its human counterpart EB-1 was identified in an interaction screen with the tumour suppressor protein APC. EB-1 was able to substitute for the complete loss of the mal3+ gene product suggesting that the two proteins might have similar functions. Cells containing a mal3 null allele were viable but showed a variety of phenotypes, including impaired control of cell shape. A fusion protein of Mal3 with the Aequorea victoria green fluorescent protein led to in vivo visualization of both cytoplasmic and mitotic microtubule structures indicating association of Mal3 with microtubules. The absence of Mal3 protein led to abnormally short, often faint cytoplasmic microtubules as seen by indirect antitubulin immunofluorescence. While loss of the mal3+ gene product had no gross effect on mitotic spindle morphology, overexpression of mal3+ compromised spindle formation and function and led to severe growth inhibition and abnormal cell morphology. We propose that Mal3 plays a role in regulating the integrity of microtubules possibly by influencing their stability.  相似文献   

13.
14.
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51+. The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51+. Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.  相似文献   

15.
16.
Schizosaccharomyces pombe Rho1p is essential, directly activates β-1,3-glucan synthase, and participates in the regulation of morphogenesis. In S. pombe, Rho1p is activated by at least three guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p, and Rgf3p. In this study we show that Rgf2p is a Rho1p GEF required for sporulation. The rgf2+ deletion did not affect forespore membrane formation and the nuclei were encapsulated properly. However, the mutant ascospores appeared dark and immature. The rgf2Δ zygotes were not able to release the ascospores spontaneously, and the germination efficiency was greatly reduced compared to wild-type (wt) spores. This phenotype resembles that of the mutants in bgs2+, which encodes a sporulation-specific glucan synthase subunit. In fact, glucan synthase activity was diminished in sporulating rgf2Δ diploids. Rgf2p also plays a role in β-glucan biosynthesis during vegetative growth. Overexpression of rgf2+ specifically increased GTP-bound Rho1p, caused changes in cell morphology, and elicited an increase in β-1,3-glucan synthase activity. Moreover, the simultaneous disruption of rgf1+ and rgf2+ was lethal and both Rgf1p and Rgf2p were able to partially substitute for each other. Our results suggest that Rgf1p and Rgf2p are alternative GEFs with an essential overlapping function in Rho1p activation during vegetative growth.  相似文献   

17.
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.  相似文献   

18.
19.
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cytokinesis contractile actomyosin ring (CAR). Here we describe a new component of the interphase nodes and cytokinesis rings, which we named Nod1. Consistent with its role in cell size control at division, nod1Δ cells were elongated and epistatic with regulators of Wee1. Through biochemical and localisation studies, we placed Nod1 in a complex with the Rho-guanine nucleotide exchange factor Gef2. Nod1 and Gef2 mutually recruited each other in nodes and Nod1 also assembles Gef2 in rings. Like gef2Δ, nod1Δ cells showed a mild displacement of their division plane and this phenotype was severely exacerbated when the parallel Polo kinase pathway was also compromised. We conclude that Nod1 specifies the division site by localising Gef2 to the mitotic cell middle. Previous work showed that Gef2 in turn anchors factors that control the spatio-temporal recruitment of the actin nucleation machinery. It is believed that the actin filaments originated from the nodes pull nodes together into a single contractile ring. Surprisingly however, we found that node proteins could form pre-ring helical filaments in a cdc12-112 mutant in which nucleation of the actin ring is impaired. Furthermore, the deletion of either nod1 or gef2 created an un-expected situation where different ring components were recruited sequentially rather than simultaneously. At later stages of cytokinesis, these various rings appeared inter-fitted rather than merged. This study brings a new slant to the understanding of CAR assembly and function.  相似文献   

20.
We have isolated a fission yeast karyogamy mutant, tht1, in which nuclear congression and the association of two spindle pole bodies occurs but the subsequent fusion of nuclear envelopes is blocked. The tht1 mutation does not prevent meiosis, so cells execute meiosis with two unfused nuclei, leading to the production of aberrant asci. The tht1+ gene was cloned and sequenced. Predicted amino acid sequence has no significant homology to previously known proteins but strongly suggests that it is a type I membrane protein. The tht1+ gene is dispensable for vegetative growth and expressed only in conjugating cells. Tht1p is a glycoprotein susceptible to endoglycosilase H digestion. Site- directed mutagenesis showed that the N-glycosylation site, as well as the COOH-terminal region of Tht1p, is essential for its function. A protease protection assay indicated that the COOH terminus is cytoplasmic. Immunocytological analysis using a HA-tagged Tht1p suggested that the protein is localized in nuclear envelopes and in the ER during karyogamy and that its levels are reduced in cells containing fused nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号