首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绿原酸的药理学研究进展   总被引:49,自引:1,他引:48  
绿原酸(chlorogenic acid,CGA)存在于多种植物之中,具有广泛的药理作用。近年来,对绿原酸的研究发展较快,目前研究表明绿原酸口服吸收率低,在血浆中主要以代谢产物的形式存在,主要经过肾脏排泄,具有抗氧化、抗肿瘤、抗菌、抗病毒、免疫调节、降糖等多种作用。对CGA的深入研究,将为我们科学制药与合理用药提供重要的理论依据。  相似文献   

2.
Chlorogenic acid, a phenolic compound found ubiquitously in plants, is an in vitro antioxidant and metal chelator. Some derivatives of chlorogenic acid are hypoglycemic agents and may affect lipid metabolism. Concentrations of cholesterol and triacylglycerols are of interest due to their association with diseases such as non-insulin-dependent-diabetes- mellitus and obese insulin resistance. As little is known about the effects of chlorogenic acid in vivo, studies using obese, hyperlipidemic, and insulin resistant (fa/fa) Zucker rats were conducted to test the effect of chlorogenic acid on fasting plasma glucose, plasma and liver triacylglycerols and cholesterol concentrations. Aditionally, the effects of chlorogenic acid on selected mineral concentrations in plasma, spleen, and liver were determined. Rats were implanted with jugular vein catheters. Chlorogenic acid was infused (5 mg/Kg body weight/day) for 3 weeks via intravenous infusion. Chlorogenic acid did not promote sustained hypoglycemia and significantly lowered the postprandial peak response to a glucose challenge when compared to the same group of rats before Chlorogenic acid treatment. In Chlorogenic acid-treated rats, fasting plasma cholesterol and triacylglycerols concentrations significantly decreased by 44% and 58% respectively, as did in liver triacylglycerols concentrations (24%). We did not find differences (p > 0.05) in adipose triacylglycerols concentration. Significant differences (p < 0.05) in the plasma, liver, and spleen concentration of selected minerals were found in chlorogenic acid-treated rats. In vivo, chlorogenic acid was found to improve glucose tolerance, decreased some plasma and liver lipids, and improve mineral pool distribution under the conditions of this study.  相似文献   

3.
Mc Clure , T. T. (Plant Pest Control Division, ARS, USDA, Washington, D. C.) Chlorogenic acid accumulation and wound healing in sweet potato roots . Amer. Jour. Bot. 47(4) : 277—280. Illus. 1960.–Chlorogenic acid accumulation in cells adjacent to a wound occurs before suberization and wound-periderm formation. Suberization during wound healing was highly correlated with chlorogenic acid accumulation and with wound-periderm formation. The possible role of chlorogenic acid as a source of chemical units for suberization is suggested. Histochemical tests indicate that suberization during wound healing may be a form of lignification. Over 5 times as much lignin was found by chemical analysis in the tissues of healed surfaces as in controls.  相似文献   

4.
Chlorogenic acid is the major polyphenol in foods derived from plants and is a good substrate for polyphenol oxidase. Chlorogenic acid quinone (CQA-Q), which is an oxidative product of chlorogenic acid by polyphenol oxidase, is an important intermediate compound in enzymatic browning. CQA-Q was prepared, and its properties and the relationship with browning were examined. The quinone solution was yellow or orange, and its molecular absorption coefficient was estimated to be 1.7×103 for 325 nm and 9.7×102 for 400 nm in an acidic aqueous solution. Chlorogenic acid and H2O2 were spontaneously generated in the CQA-Q solution as the yellowish color of the solution gradually faded. A pale colored polymer was the major product in the reaction solution. Amino acids such as lysine and arginine added to CQA-Q solution did not repress the fading of the yellowish color of the solution. We concluded from these results that CQA-Q itself and a mixture of CQA-Q and amino acids did not form intensive brown pigments in the acidic aqueous solution. H2O2 spontaneously formed in the CQA-Q solution, and other polyphenols might have played an important role in the formation of the brown color by enzymatic browning.  相似文献   

5.
Monochloramine prepared in situ by first adding chlorine to a suspension of microorganisms, followed by subsequent addition of ammonia, inactivated the MS2 coliphage more rapidly than did exposure of phage to monochloramine prepared either by adding chlorine to ammonia or by adding chlorine and ammonia simultaneously. The rapid viral inactivation was apparently due to the exposure of MS2 to free chlorine before the addition of ammonia. The average 99% CT value of MS2 when exposed to free chlorine was 1.3 and 1.1 at 5 and 15 degrees C, respectively. The average 99% CT values of MS2 briefly exposed to the combined action of free chlorine followed by the addition of ammonia to form monochloramine in situ were 19.3 and 1.5 at 5 and 15 degrees C, respectively. No 99% CT values were calculated for the inactivation of MS2 with preformed monochloramine because less than 1 log (90%) of inactivation occurred during a 4-h contact time. Inactivation of MS2 by monochloramine was more rapid at 15 than at 5 degrees C and when the chlorine to nitrogen weight ratio was 5:1 compared with 3:1. Monochloramine was a more efficient inactivating agent for the coliforms Escherichia coli and Klebsiella pneumoniae than it was for the MS2 coliphage.  相似文献   

6.
Chlorogenic acid is the major polyphenol in foods derived from plants and is a good substrate for polyphenol oxidase. Chlorogenic acid quinone (CQA-Q), which is an oxidative product of chlorogenic acid by polyphenol oxidase, is an important intermediate compound in enzymatic browning. CQA-Q was prepared, and its properties and the relationship with browning were examined. The quinone solution was yellow or orange, and its molecular absorption coefficient was estimated to be 1.7 x 10(3) for 325 nm and 9.7 x 10(2) for 400 nm in an acidic aqueous solution. Chlorogenic acid and H2O2 were spontaneously generated in the CQA-Q solution as the yellowish color of the solution gradually faded. A pale colored polymer was the major product in the reaction solution. Amino acids such as lysine and arginine added to CQA-Q solution did not repress the fading of the yellowish color of the solution. We concluded from these results that CQA-Q itself and a mixture of CQA-Q and amino acids did not form intensive brown pigments in the acidic aqueous solution. H2O2 spontaneously formed in the CQA-Q solution, and other polyphenols might have played an important role in the formation of the brown color by enzymatic browning.  相似文献   

7.
Field and laboratory studies were conducted to determine mollusk distributions in proximity to waste-water treatment plants (WTP's) in the upper Clinch River and to test the tolerance of two mollusk species to monochloramine and unionized ammonia, the major toxicants in domestic effluent. River reaches up to 3.7 km downstream of WTP's were devoid of freshwater mussels (Unionidae), and tolerance to effluents varied among snails, sphaeriid clams, and the asian clam Corbicula fluminea. Residential communities with septic systems had no measurable impact on mollusk assemblages downstream.Laboratory bioassays with glochidia of Villosa iris yielded the following results: 24 h EC50 and LC50 values of 0.042 mg l–1 and 0.084 mg l–1 monochloramine, respectively; and 24 h EC50 and LC50 of 0.237 mg l–1 and 0.284 mg l–1 unionized ammonia, respectively. Glochidia rank among the most sensitive invertebrates in their tolerance to these toxicants. The snail Pleurocera unciale unciale was moderately sensitive, with 96 h LC50 values of 0.252 mg l–1 monochloramine and 0.742 mg l–1 unionized ammonia. Monitoring of monochloramine and unionized ammonia concentrations 0.1 km below WTP outfalls indicated that monochloramine was the toxicant likely inhibiting mollusk recovery below these plants.The Unit is jointly supported by the U.S. Fish and Wildlife Service, Virginia Department of Game and Inland Fisheries, The Wildlife Management Institute and Virginia Polytechnic Institute and State University.  相似文献   

8.
Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.  相似文献   

9.
Inactivation of biofilm bacteria   总被引:18,自引:0,他引:18  
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

10.
Inactivation of biofilm bacteria.   总被引:6,自引:14,他引:6       下载免费PDF全文
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

11.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

12.
Seven species of bacterial select agents were tested for susceptibility to monochloramine. Under test conditions, the monochloramine routinely maintained in potable water would reduce six of the species by 2 orders of magnitude within 4.2 h. Bacillus anthracis spores would require up to 3.5 days for the same inactivation with monochloramine.  相似文献   

13.
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.  相似文献   

14.
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.  相似文献   

15.
Chlorogenic acid, the ester of caffeic acid with quinic acid, is one of the most abundant polyphenols in the human diet. The antioxidant and anticarcinogenic properties of chlorogenic acid have been established in animal studies. However, little is known about the molecular mechanisms through which chlorogenic acid inhibits carcinogenesis. In this study, we found that chlorogenic acid inhibited the proliferation of A549 human cancer cells in vitro. The results of the soft agar assay indicated that chlorogenic acid suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells in a dose-dependent manner. Pretreatment of JB6 cells with chlorogenic acid blocked UVB- or TPA-induced transactivation of AP-1 and NF-kappaB over the same dose range. At low concentrations, chlorogenic acid decreased the phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase 4 induced by UVB/12-O-tetradecanoylphorbol-13-acetate, yet higher doses were required to inhibit extracellular signal-regulated kinases. Chlorogenic acid also increased the enzymatic activities of glutathione S-transferases (GST) and NAD(P)H: quinone oxidoreductase. Further studies indicated that chlorogenic acid could stimulate the nuclear translocation of Nrf2 (NF-E2-related factor) as well as subsequent induction of GSTA1 antioxidant response element (ARE)-mediated GST activity. The phosphatidylinositol 3-kinase pathway might be involved in the activation of Nrf2 translocation. These results provide the first evidence that chlorogenic acid could protect against environmental carcinogen-induced carcinogenesis and suggest that the chemopreventive effects of chlorogenic acid may be through its up-regulation of cellular antioxidant enzymes and suppression of ROS-mediated NF-kappaB, AP-1, and MAPK activation.  相似文献   

16.
Chlorogenic acid (CGA) is the main component of coffee and an antioxidant. CGA has been reported to bear various good health effects. At the same time, it has been found that the addition of CGA induces an undesirable deformation of red blood cells. This fact suggests that CGA may bind to the proteins or/and membrane lipids of red blood cells. This study aimed to examine how CGA binds the bilayers of phosphatidylcholine (PC), one of red blood cells' primary lipids. To this end, we investigated the effect of CGA on the phase behavior and the structure of dipalmitoyl-PC (DPPC) bilayers in the form of multi-lamellar vesicles. Calorimetry and dilatometry measurements showed that the DPPC chain melting transition cooperativity decreases as increasing CGA concentrations. In addition, X-ray diffraction results showed that the lamellar repeat periodicity becomes disordered, and the periodicity disappears completely at high CGA concentrations. Together with these findings, it can be inferred that the CGA molecules do not penetrate inside the DPPC bilayers but bind to their surface in a negatively charged form.  相似文献   

17.
Inactivation of infectious viruses during drinking water treatment is usually achieved with free chlorine. Many drinking water utilities in the United States now use monochloramine as a secondary disinfectant to minimize disinfectant by-product formation and biofilm growth. The inactivation of human adenoviruses 2, 40, and 41 (HAdV2, HAdV40, and HAdV41), coxsackieviruses B3 and B5 (CVB3 and CVB5), echoviruses 1 and 11 (E1 and E11), and murine norovirus (MNV) are compared in this study. Experiments were performed with 0.2 mg of free chlorine or 1 mg of monochloramine/liter at pH 7 and 8 in buffered reagent-grade water at 5°C. CT values (disinfectant concentration × time) for 2- to 4-log10 (99 to 99.99%) reductions in virus titers were calculated by using the efficiency factor Hom model. The enteroviruses required the longest times for chlorine inactivation and MNV the least time. CVB5 required the longest exposure time, with CT values of 7.4 and 10 mg·min/liter (pH 7 and 8) for 4-log10 inactivation. Monochloramine disinfection was most effective for E1 (CT values ranged from 8 to 18 mg·min/liter for 2- and 3-log10 reductions, respectively). E11 and HAdV2 were the least susceptible to monochloramine disinfection (CT values of 1,300 and 1,600 mg-min/liter for 3-log10 reductions, respectively). Monochloramine inactivation was most successful for the adenoviruses, CVB5, and E1 at pH 7. A greater variation in inactivation rates between viruses was observed during monochloramine disinfection than during chlorine disinfection. These data will be useful in drinking water risk assessment studies and disinfection system planning.Disinfection is a critical step in the drinking water treatment process to inactivate infectious viruses because primary treatment is less effective for the removal of viruses. Chlorine and monochloramine are the most widely used disinfectants in the United States (2). Free chlorine is widely used as a primary disinfectant following filtration and also as a secondary disinfectant in distribution systems. Under the Long Term 2 Enhanced Surface Water Treatment Rule (38), monochloramine can also be used as a primary disinfectant, but because it requires longer contact times to achieve the same level of disinfection as free chlorine it is primarily used as a secondary disinfectant to maintain a stable disinfectant residual in the distribution system and minimize disinfection by-product formation and biofilm growth.The efficacy of chlorine disinfection for viruses has been evaluated in numerous studies over the years. Many early studies focused on the disinfection of polioviruses by chlorine (14, 17, 26, 28, 30, 39, 40, 43). Early investigators suggested a number of variables that must be controlled in the disinfection of viruses: contact time, temperature, ionic strength, pH, chlorine concentration, and virus aggregation (29, 30). These researchers concluded that comparisons and general trends of disinfection efficacy can only be discerned for viruses when the same disinfection parameters are applied.Fewer studies have investigated the disinfection efficacy of monochloramine, but monochloramine disinfection has been found to be less effective than free chlorine for viruses. In comparative studies of chlorine and monochloramine disinfection, coxsackievirus B5, adenovirus 2, and adenovirus 41 were found to be inactivated far more readily by chlorine than monochloramine (4, 5, 32). For drinking water treatment systems where monochloramine is used as a secondary disinfectant, it is important to know its efficacy for a wide range of viruses, as infectious viruses may be introduced in the distribution system where only monochloramine is present. In addition, relatively few studies have investigated the efficacy of monochloramine as systematically as free chlorine; frequently only one concentration, pH, or temperature has been investigated. Two notable exceptions were investigations that examined monochloramine disinfection of human adenovirus 2 (HAdV2) and coxsackievirus B5 (CVB5) at multiple pH levels (21, 31).In 2005, the U.S. Environmental Protection Agency (USEPA) published its second candidate contaminant list (CCL2). The CCL2 is comprised of unregulated microbial and chemical contaminants of potential public health concern that are known or anticipated to occur in drinking water systems and includes: echovirus, coxsackievirus, adenovirus, and calicivirus (36). A number of researchers have reported the disinfection efficacy of free chlorine for representatives of the CCL2 viruses (4, 5, 7, 11, 13, 18, 20, 22, 27, 33, 34, 35), but fewer studies have investigated the disinfection efficacy of monochloramine on these viruses (4, 5, 21, 31). In addition, comparison between existing studies of chlorine or monochloramine disinfection is difficult because of differences in the viruses examined, experimental parameters investigated, and analytical methods used.The present study compared the inactivation kinetics for representative CCL2 viruses with levels of free chlorine and monochloramine recommended for drinking water disinfection. Duplicate experiments with both disinfectants were carried out in pH 7 and 8 buffered chlorine-demand-free (CDF) water at 5°C, with eight viruses chosen to represent the CCL2 virus types. Coxsackieviruses B5 and B3 (CVB5 and CVB3) and echoviruses 1 and 11 (E1 and E11) were chosen based on existing data suggesting resistance to free chlorine, disease implications, and likelihood of presence in higher numbers in natural water. Three representative human adenoviruses were studied, including both serotypes of species F HAdV (40 and 41) that cause gastroenteritis and HAdV2, a representative of respiratory HAdV that may be found in water because they are present in fecal excretions (9). Murine norovirus (MNV), phylogenetically similar to human norovirus and the only norovirus that can be propagated in cell culture, was used as a surrogate for human norovirus. Kinetic inactivation curves are presented, and CT values (disinfectant concentration × time, reported in mg·min/liter) were calculated by using the efficiency factor Hom (EFH) model (16).  相似文献   

18.
Pseudomonas aeruginosa attached to alginate gel beads in sparse, thin biofilms exhibited reduced susceptibility to monochloramine and hydrogen peroxide compared with planktonic cells of the same micro-organism. Disinfection rate coefficients for planktonic bacteria averaged 0.551 mg(-1)min(-1) for monochloramine and 3.1 x 10(-4)l mg(-1) min(-1) for hydrogen peroxide. The corresponding values for 24-h-old biofilm cells were 0.291 mg min(-1) and 9.2 x 10(-5) 1 mg(-1) min(-1) for monochloramine and hydrogen peroxide, respectively. Several pieces of evidence support the interpretation that the reduced susceptibility of biofilm was not due simply to inadequate delivery of the antimicrobial agent to the local environment of the attached cells. No correlation between biofilm susceptibility and biofilm initial areal cell density was observed. Rapid delivery of hydrogen peroxide to the attachment surface, and subsequently to the interior, of the alginate gel beads was visualized by a direct experimental technique. Theoretical analysis of unsteady diffusion and diffusion reaction interactions also argued against any significant delay or barrier to antimicrobial or oxygen delivery. It was hypothesized that new genes are expressed when bacteria attach to a surface and begin to form a biofilm and that some of the resulting gene products reduce the susceptibility of the cell to antimicrobial agents including oxidative biocides such as monochloramine and hydrogen peroxide.  相似文献   

19.
Legionnaires' disease (LD) outbreaks are often traced to colonized potable water systems. We collected water samples from potable water systems of 96 buildings in Pinellas County, Florida, between January and April 2002, during a time when chlorine was the primary residual disinfectant, and from the same buildings between June and September 2002, immediately after monochloramine was introduced into the municipal water system. Samples were cultured for legionellae and amoebae using standard methods. We determined predictors of Legionella colonization of individual buildings and of individual sampling sites. During the chlorine phase, 19 (19.8%) buildings were colonized with legionellae in at least one sampling site. During the monochloramine phase, six (6.2%) buildings were colonized. In the chlorine phase, predictors of Legionella colonization included water source (source B compared to all others, adjusted odds ratio [aOR], 6.7; 95% confidence interval [CI], 2.0 to 23) and the presence of a system with continuously circulating hot water (aOR, 9.8; 95% CI, 1.9 to 51). In the monochloramine phase, there were no predictors of individual building colonization, although we observed a trend toward greater effectiveness of monochloramine in hotels and single-family homes than in county government buildings. The presence of amoebae predicted Legionella colonization at individual sampling sites in both phases (OR ranged from 15 to 46, depending on the phase and sampling site). The routine introduction of monochloramine into a municipal drinking water system appears to have reduced colonization by Legionella spp. in buildings served by the system. Monochloramine may hold promise as community-wide intervention for the prevention of LD.  相似文献   

20.
1. Chloramine was previously shown to inhibit glutamine uptake by human lymphoblast tumour cells. In the present study, the effect of monochloramine on the glutamine and glucose transport systems in HeLa cells and rat mesenteric lymphocytes was investigated. 2. Initial exposure to monochloramine slightly inhibited both the glutamine and glucose transport systems in HeLa cells. However, pre-exposing the cells to monochloramine increased its inhibitory action. 3. Similar results were obtained using rat mesenteric lymphocytes, which suggests that monochloramine's effects are not cell specific. 4. Only the Na(+)-independent (system L) component of glutamine transport activity in HeLa cells was inhibited by monochloramine. 5. Dithiothreitol protected both the glucose and glutamine transport carriers in HeLa cells against monochloramine inhibition. 6. Monochloramine did not inhibit HeLa cell metabolism, nor enhance cell lysis, which, in conjunction with other experimental data, suggests that monochloramine inhibits cellular transport activity by binding to thiol groups present on the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号