首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined effects of hypertonic solutions and temperature changes on the posthypertonic hemolysis of human red blood cells have been investigated. Cells were exposed to hypertonic solutions of sodium chloride and also to hypertonic solutions of the extracellular cryoprotective additive sucrose, such as would occur during the freezing of cells in an isotonic salt solution to which 15% wv sucrose had been added. In both cases the extent of posthypertonic hemolysis was increased by temperature reduction per se when the osmolality of the extracellular solution exceeded about 1400 mOsm/kg water. The posthypertonic hemolysis of cells exposed to a hypertonic solution at 0 °C was reduced with the temperature of the resuspension solution up to 35 °C.  相似文献   

2.
A E Woolgar 《Cryobiology》1974,11(1):44-51
Human red blood cells were frozen at temperatures down to ?9 °C in solutions containing sucrose, and the hemolysis on thawing was measured. This was compared with the hemolysis caused by exposing the cells to high concentrations of sucrose and then resuspending them in more dilute solutions at 4 °C. The effects of the hypertonic solutions of sucrose on potassium, sodium, and sucrose movements were also investigated. It was found that sucrose does not prevent damage to the cells by very hypertonic solutions (whether during freezing and thawing or at 4 °C) but it does reduce hemolysis of cells previously exposed to these solutions if present in the resuspension (or thawing) solution. Evidence is presented that the damaging effects of the hypertonic solutions of sucrose occurring during freezing are associated with changes in cell membrane permeability but that posthypertonic hemolysis is not primarily associated with a “loading” of the cells with extracellular solutes in the hypertonic phase. It is concluded that sucrose may reduce hemolysis of red blood cells by slow freezing and thawing by reducing colloid osmotic swelling of cells with abnormally permeable membranes.  相似文献   

3.
Previous studies have demonstrated that glycerol does not have to permeate bovine red cells to protect them against subsequent freezing and thawing. The present study is concerned with the relation between solute permeation and freezing injury of human red cells. Cells were held in 2 m glycerol for 30 sec to 10 min at 0 °C and then frozen to ?196 °C at 60 °C/min. Cells cooled at this rate have a very low probability of undergoing intracellular freezing. Percent survivals (≡percent unhemolyzed) increased by 21% (from 66 to 80%) over the first 3-min period. Extrapolation to zero time (and zero glycerol permeation) yields a survival of 57%. Between 30 sec and 3 min the calculated osmolal ratio of intracellular glycerol to other solutes increased 240% (from 2.5 to 5.7). The human red cell is impermeable to sucrose at 0 °C. Cells suspended in 1.40 m sucrose (equiosmolal to 2.0 m glycerol) for 0.5 to 10 min prior to freezing yielded as high survivals after thawing as did cells in glycerol.These data indicate that prior permeation of additive is not a prerequisite for the survival of red cells subjected to subsequent freezing and thawing. Although sucrose and glycerol protect equally well to this point, differences appear when attempts are made to remove the additive. Over 90% of the cells survive the removal of glycerol. Only some 30% survive the removal of sucrose. Cells frozen in an equisomolal solution of sodium chloride do not even survive the initial freezing and thawing.The findings indicate that slow freezing injury cannot be accounted for in terms of the attainment of a critical minimum volume, nor can it be considered to be equivalent to posthypertonic hemolysis.  相似文献   

4.
G J Morris  J Farrant 《Cryobiology》1973,10(2):119-125
The increase in thermal shock hemolysis in hypertonic sodium chloride with increasing cooling rate was confirmed. Thermal shock damage was also induced by hypertonic solutions of sucrose but it decreased with increasing cooling rate. The effect of cooling rate on thermal shock hemolysis appears to be due to the time that the cells are in the hypertonic solutions. The extent of the stress of the temperature reduction was independent of the cooling rate. In hypertonic sodium chloride susceptibility to thermal shock damage increased with increasing time of exposure at +25 °C (0–5 min) before decreasing with time (5–50 min). In contrast, with hypertonic sucrose, thermal shock damage increased gradually with time of exposure. The protective effects of sucrose on thermal shock hemolysis at a given osmolality can be explained by the different solution properties (e.g., ionic strength) of hypertonic sodium chloride and sucrose. These results suggest that the role of thermal shock damage during slow freezing should be reexamined.  相似文献   

5.
Summary Suspension of human erythrocytes at 37° C in an environment made hypertonic by increasing concentrations of sodium chloride and sucrose was followed by hemolysis when the temperature was lowered to 0° C. Two distinct stages were involved in this hemolytic phenomenon, the first being incubation with hypertonic solute at some temperature above 20° C with an increasing effect up to 45° C, and the second stage consisting of lowering the temperature below 15° C with increasing hemolysis down to 0° C. The rate of cooling was not an important factor, but the presence of ions reduced the extent of cold-induced hemolysis in hypertonic sucrose. No significant release of membrane phospholipid and cholesterol accompanied this hemolysis. The solubilization of membrane protein components was investigated, with some differences appearing on sodium dodecyl sulfate polyacrylamide gel electrophoresis between hypertonic and isotonic supernatants. Spectrin could not be identified in solubilized form. Correlation of the temperatures of note in these studies with results from the literature on other biological effects of temperature-induced phase transitions in membrane lipids strongly points to the conclusion that such transitions are involved in the mechanism of cold-induced hypertonic hemolysis. It is postulated that the hypertonic milieu has resulted in membrane-protein alteration damage which prevents normal adaption to the new physical state of the membrane lipids during cooling.  相似文献   

6.
The effect of various freezing rates on the extent of hemolysis in human, bovine and ovine erythrocytes, which are known to have different cell volumes, water contents and permeabilities, was investigated. Blood in stainless steel capillary tubes was frozen at various rates by abrupt immersion of the capillaries into cooling baths at temperatures ranging from ?20° to ?130°C. Minimum lysis values were obtained at freezing temperatures of ?40°, ?50° and ?70°C with, respectively, human, bovine and ovine blood. The smallest, highly permeable sheep erythrocytes were the least damaged at the highest freezing rates; the largest human cells with the highest water content, suffered the greatest damage; intermediate values were obtained with ox blood. At the lower freezing rates, the largest, human cells were the least damaged; the highest hemolysis values were obtained with the smallest, highly permeable sheep erythrocytes; ox blood again gave intermediate values. These results are in agreement with current views that, (1) very rapid freezing results in the formation of damaging intracellular ice; (2) injury associated with slow freezing is related to the extent of dehydration or to the increase in electrolyte concentration which accompanies ice formation; (3) minimum hemolysis is obtained under those freezing conditions in which osmotic dehydration has been sufficient to prevent the formation of intracellular ice, but has left enough water in the cells to prevent the damaging effects of dehydration and high electrolyte concentrations.  相似文献   

7.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

8.
G Rapatz  B Luyet  A MacKenzie 《Cryobiology》1975,12(4):293-308
Human erythrocytes suspended in a sodium-free buffered salt solution containing glycerol in 1 m concentration (1 part of packed cells to 4 parts buffered salt solution) were frozen by slow, moderately rapid, or very rapid cooling to various subzero C temperatures. The frozen specimens, after a 5-min storage period at a given temperature, were thawed at low, moderately high, or very high rates. The hemolysis in the frozen and thawed samples was measured by a colorimetric determination of the hemoglobin released from the damaged cells. At ?10 °C, the highest freezing temperature employed, nearly 100% recovery of intact erythrocytes was obtained irrespective of the cooling and rewarming conditions. The extent of the hemolysis after exposure to lower freezing temperatures depended upon the cooling and rewarming conditions. Moderately rapid and very rapid freezing to, and thawing from temperatures below ?40 °C permitted significantly higher recoveries of intact cells than the other freezing/ thawing combinations. In the temperature range ?15 to ?30 °C the combination slow cooling and slow rewarming afforded maximum protection. Very rapid freezing/ slow thawing was the most damaging combination throughout the entire freezing range. The results were interpreted in part by a conventional two-factor analysis, lower cooling rates allowing concentrated salts to determine hemolysis, higher cooling rates destroying the cells by intracellular freezing. Apparent anomalies were explained in terms of a generalized “thermal/osmotic” shock according to which the erythrocytes were subject to greater hemolysis the higher the rates of cooling and/or warming.  相似文献   

9.
Human red blood cells, suspended in solutions of sodium chloride, have been frozen to temperatures between -2 and -14 degrees C and thawed, and the extent of hemolysis was measured. In parallel experiments, red cells were exposed to similar cycles of change in the composition of the suspending solution, but by dialysis at 21 degrees C. The tonicity of the saline in which the cells were initially suspended was varied between 0.6x isotonic and 4x isotonic; some samples from each experimental treatment were returned to isotonic saline before hemolysis was measured. It was found that the tonicity of the saline used to suspend the cells for the main body of the experiment affected the amount of hemolysis measured: raising the tonicity from 0.6x to 1x to 2x reduced hemolysis, both in the freezing and in the dialysis experiments, whereas raising the tonicity further to 4x reversed that trend. There was little difference between the freeze/thaw and the dialysis treatments for the cells suspended in 1x or 2x saline, whether or not the cells were returned to isotonic conditions. However, the cells suspended in 0.6x saline showed greater damage from freezing and thawing than from the comparable change in the composition of the solution, whether or not they were returned to isotonic conditions. Cells that were suspended in 4x saline and exposed to changes in salt concentration by dialysis showed less hemolysis when they were assayed in the 4x solution than cells that had received the comparable freezing/thaw treatment, but when the experiment included a return to isotonicity, the two treatments gave similar results. Returning the cells to isotonic saline had a negligible affect on the cells in 0.6x and 1x saline, but caused considerable hemolysis in the 2x and 4x samples, more so after dialysis than after freezing and thawing. We conclude that cells suspended in 0.6x and 4x saline behave differently from cells suspended in 1x and 2x saline and hence that cells suspended in a range of solutions of differing initial tonicity should not be treated as a homogeneous population. We argue that an effect of the unfrozen fraction of water (U) cannot be distinguished, within the framework of these freeze/thaw experiments alone, from an effect of initial tonicity, and that the biphasic nature of the correlation between haemolysis and U makes a causal connection improbable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
D.B. Pribor 《Cryobiology》1974,11(1):60-72
Washed human erythrocytes were suspended in 0, 5, 10, 15, and 20% PVP in phosphate-buffered saline (PBS). Fifty lambda samples were frozen in alcohol baths at temperatures ranging from ?10 ° to ?80 °C. The specimens were frozen either for 1 or 16 min, rapidly thawed, and resuspended in PBS or PBS plus PVP. Percent hemolysis was determined colorimetrically. Results indicate that there is a high degree of latent damage when red cells are frozen in the presence of PVP. This damage is evident from the large increase in hemolysis when freeze-thawed, intact red cells are resuspended in the PBS. Under some circumstances 16 min freezing is significantly less damaging than 1 min freezing. This indicates a partial recovery from the freezing stress during subzero storage of the red cells.The general cryoprotective properties of PVP were described in terms of: (1) latent damage; (2) storage damage; (3) optimal cooling and rewarming rates (as a function of freezing bath temperature); (4) optimum PVP concentration; and (5) post-thaw cryoprotection. The data were compared with that from a similar study using dextran-40. This comparison indicated six similarities and ten differences in the cryoprotective properties of dextran and PVP. The remarkable differences between dextran and PVP was counted as an important common characteristics of macromolecular cryoprotective agents. That is, their cryoproteetive properties cannot be reduced to one or a few physical characteristics held in common. Nine other common characteristics were listed. Several of these, which include latent damage and recovery from latent damage, cannot be explained by current theories of cryoprotection. A multifactor theory was proposed to account for these ten common features of macromolecular cryoprotective agents.  相似文献   

11.
《Cryobiology》2009,58(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

12.
Muldrew K 《Cryobiology》2008,57(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

13.
A droplet freezing technique for the cryopreservation of indicator red cells is described. Recovery was crucially dependent on the composition of the solution in which the cells were suspended. Preliminary experiments to determine the relative importance of sucrose, glucose, sodium chloride and hydroxyethyl starch (HES) in determining the survival of trypsin-treated sheep red cells showed that the addition of sucrose or HES or both to isotonic sodium chloride solution increased recovery, whereas the additional inclusion of glucose was detrimental. It was shown that glucose penetrated the cells whereas sucrose did not. The optimum combination of sucrose and sodium chloride concentration, in the presence of 6 g/dl HES, was 7 g/dl sucrose plus 0.3 g/dl sodium chloride. Recovery was increased by increasing the concentration of HES, and maximal recovery was obtained by thawing the frozen droplets in phosphate-buffered saline at 40 °C. Trypsintreated ox and human cells gave much lower recovery than sheep cells when HES was used in the freezing mixture but the substitution of dextran (10 g/dl) for HES gave greater than 80% recovery with all three species. Ten different antibody-coupled reagent cells all gave >83% recovery. The effects of hematocrit, incubation time, and storage temperature are described. The preservation technique described is simple and convenient, and will make it possible to extend the use of immunoassay procedures using antibody-coupled red cells.  相似文献   

14.
Cell movement in the amoebae Dictyostelium discoideum has been examined in media differing in monovalent cation concentration (i.e. Na+ and K+). Under isotonic or even slightly hypertonic conditions, the cells move equally well in solutions in which either potassium or sodium ions dominate. However, in strongly hypertonic solutions the amoebae showed motility in a 2% potassium chloride solution, but remained motionless in a hypertonic 2% sodium chloride solution. This inhibition of D. discoideum amoebae movement in a hypertonic sodium chloride solution was fully reversible. Such behaviour corresponds to that of plant, fungi, and some invertebrate animal cells rather than protozoan or vertebrate cells. These observations suggest that studies using D. discoideum as a model for cell motility in vertebrate animal tissue cells should be considered with caution, and would seem to confirm the classification of cellular slime moulds as related rather to Fungi than to Protista. This also shows that the cell membrane models should consider the asymmetry in sodium/potassium ion concentrations found in vertebrate animal cells as one of various possibilities.  相似文献   

15.
P Mazur  K W Cole 《Cryobiology》1989,26(1):1-29
The cause of slow freezing injury and the basis of the protection by solutes like glycerol are subjects of debate. During slow freezing, cells are sequestered in unfrozen channels between ice crystals that grow by removing pure water from the channels. As a consequence, the solute concentration in the channels rises and the volume of liquid in the channels progressively decreases. The rise in solute concentration, in turn, causes the cells to progressively shrink osmotically. Until recently cryobiologists have ascribed slow freezing injury to either the rise in solute (electrolyte) concentrations in the channels or to the consequent cell shrinkage, rather than to the decrease in the of the channels. Although ordinarily reciprocally coupled, it is possible to separate the composition of the channels from their size, or more precisely from the magnitude of the unfrozen fraction, by suspending cells in NaCl/cryoprotectant solutions in which the mole ratio of the two is held constant, but the molality of the NaCl is allowed to vary below and above isotonic. When human red cells are frozen in such solutions to temperatures that produce given NaCl concentrations (ms), but varying unfrozen fractions (U), survival at low U is found to be strongly dependent on U but independent of ms. At higher values of U, survival becomes inversely dependent on both ms and U. Although cell volume during freezing is independent of the NaCl tonicity in the solution, the cells in the several solutions differ in volume both prior to the onset of freezing and after the completion of thawing. We have now examined and compared the effect of returning the thawed cells to isotonic solutions and isotonic volume or nearly so, and find that there is little change in survival after exposure to low U, but that survival after exposure to high U values exhibits substantially increased sensitivity to ms, a sensitivity that is probably a manifestation of posthypertonic hemolysis. Low values of U were in general attained by the use of solutions with low tonicities of NaCl, and as a consequence cells frozen to low U values had larger volumes prior to freezing than cells frozen to higher U values. The significance of this confounding is discussed.  相似文献   

16.
The hemolysis of human red blood cells (RBCs) after freeze-drying and resuspension depends on the vacuum-drying temperature. In an experimental study, RBCs were first solidified based on a modified high-yield cryopreservation protocol in the presence of hydroxyethyl starch and maltose. Afterward, they were vacuum-dried in a special low-temperature freeze-drying device at selected shelf temperatures between -5 and -65 degrees C. Subsequently, the dried samples were resuspended in an isotonic, phosphate-buffered saline solution. The hemolysis was determined according to a modified saline stability test. It decreases with a decreasing shelf temperature until a minimum is reached at -35 degrees C. A further decrease of the shelf temperature has no beneficial effect; the hemolysis even increases. To interpret these results, we assume that the hemolysis depends on two contrary damaging effects: (1) the higher the shelf temperature, the higher the probability of structural damages occurring during drying; (2) the lower the shelf temperature, the lower the driving force for water transport; this may lead to an incomplete intracellular dehydration which means that the cells are not in a glassy state at ambient temperature.  相似文献   

17.
On the mechanism of injury to slowly frozen erythrocytes.   总被引:4,自引:1,他引:3       下载免费PDF全文
When cells are frozen slowly in aqueous suspensions, the solutes in the suspending solution concentrate as the amount of ice increases; the cells undergo osmotic dehydration and are sequestered in ever-narrowing liquid-filled channels. Cryoprotective solutes, such as glycerol, reduce the amount of ice that forms at any specified subzero temperature, thereby controlling the buildup in concentration of those other solutes present, as well as increasing the volume of the channels that remain to accommodate the cells. It has generally been thought that freezing injury is mediated by the increase in electrolyte concentration in the milieu surrounding the cells, rather than reduction of temperature or any direct action of ice. In this study we have frozen human erythrocytes in isotonic solutions of sodium chloride and glycerol and have demonstrated a correlation between the extent of damage at specific subzero temperatures, and that caused by the action at 0 degrees C of solutions having the same composition as those produced by freezing. The cell lysis observed increased directly with glycerol concentration, both in the freezing experiments and when the cells were exposed to corresponding solutions at 0 degrees C, showing that the concentration of sodium chloride alone is not sufficient to account quantitatively for the damage observed. We then studied the effect of freezing in anisotonic solutions to break the fixed relationship between solute concentration and the volume of the unfrozen fraction, as described by Mazur, P., W. F. Rall, and N. Rigopoulos (1981. Biophys. J. 653-675). We confirmed their experimental findings, but we explain them differently. We ascribe the apparently dominant effect of the unfrozen fraction to the fact that the cells were frozen in, and returned to, anisotonic solutions in which their volume was either less than, or greater than, their physiological volume. When similar cell suspensions were subjected to a similar cycle of increase and then decrease in solution strength, but in the absence of ice (at 20 degrees C), a similar pattern of hemolysis was observed. We conclude that freezing injury to human erythrocytes is due solely to changes that occur in the composition of their surrounding milieu, and is most probably mediated by a temporary leak in the plasma membrane that occurs during the thawing (reexpansion) phase.  相似文献   

18.
Unfertilized sea urchin eggs exposed to hyperosmotic salt solutions in excess of 1.75 M undergo a form of intracellular coagulation known as black cytolysis, similar to that seen in eggs injured by freezing. The process can be simulated by the microinjection of hypertonic salt into the cell suspended in isotonic solution in the absence of volume reduction. Black cytolysis during hyperosmotic stress can be attributed to the entry of concentrated extracellular solution through a membrane made permeable by excessive osmotic stress.  相似文献   

19.
Human erythrocytes suspended at 37 degrees C in hypertonic solution of either electrolytes or nonelectrolytes undergo hemolysis when the temperature is lowered toward 0 degrees C (Green, F.A., Jung, C.Y. 1977 J. Membrane Biol. 33:249). In the present studies this hypertonic cryohemolysis was profoundly affected by the pH of incubation, and was completely abolished at ph 5. In hypertonic NaCl, there was an apparent pH optimum at 6--6.5. In hypertonic sucrose, on the other hand, hemolysis increased progressively with increasing pH between 6 and 9. Amphotericin B inhibited hypertonic cryohemolysis in NaCl or KCl solution. No inhibiting effect of amphotericin B was observed when hypertonicity was due to sodium sulfate or sucrose. Valinomycin also inhibited hypertonic cryohemolysis in KCl, but did not affect the process in NaCl or sucrose solution. SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate) and phloretin interfered with this valinomycin effect, whereas phlorizin did not. These results indicate that dissipation of an osmotic gradient across membranes may be responsible for the inhibition of the hemolysis by these inophores. Iso-osmotic cell shrinkage induced by valinomycin in 150 mM NaCl solution did not result in cryohemolysis.  相似文献   

20.
Thermal shock is a form of hemolysis which occurs in human red cells exposed to greater than a critical level of osmotic stress of 1.4 Osm and subsequently cooled from above about 12 degrees C to below that temperature. Higher concentrations and higher cooling rates each increase the amount of hemolysis, within limits. Incubation for varying periods in hypertonic solutions and varying temperatures of incubation affect the amount of thermal shock. The effect of cooling rate on thermal shock is independent of the period of exposure to hypertonic solutions. Thermal shock is not the cause of freezing injury in human red cells, at least above -10 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号