首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have carried out a study of the reaction of 13-hydroperoxy-9-cis,11-trans-octadecadienoic acid (linoleic acid hydroperoxide) with hematin. The major products are erythro-11-hydroxy-12,13-epoxy-9-octadecenoic acid, threo-11-hydroxy-12,13-epoxy-9-octadecenoic acid, 9,12,13-trihydroxy-10-octadecenoic acid, 13-keto-9,11-octadecadienoic acid, and 13-hydroxy-9,11-octadecadienoic acid. Several minor products have also been identified, including 9-hydroxy-12,13-epoxyoctadecenoic acid, 11-hydroxy-9,10-epoxy-12-octadecenoic acid, 9-hydroxy-10,12-octadecadienoic acid, and 9-keto-10,12-octadecadienoic acid. Oxygen labeling studies indicate that the observed products arise by at least two pathways. In the major pathway, hematin reduces 13-hydroperoxy-9,11-octadecadienoic acid by one electron to an alkoxyl radical that cyclizes to an adjacent double bond to form an epoxy allylic radical. The allylic radical either couples to the hydroxyl radical coordinated to hematin or diffuses from the solvent cage and couples to O2, forming a peroxyl radical. In the minor pathway, the hydroperoxide is oxidized by one electron to a 13-peroxyl radical that undergoes beta-scission to a pentadienyl radical and O2. Exchange of hydroperoxide-derived O2 for dissolved O2 occurs at this stage followed by coupling of O2 to either terminus of the pentadienyl radical. Both pathways of hydroperoxide metabolism generate significant quantities of peroxyl radicals that epoxidize the isolated double bonds of dihydroaromatic molecules. The products of hydroperoxide reaction with hematin and the oxygen labeling patterns are very similar to the products of unsaturated fatty acid hydroperoxide metabolism by platelets, aorta, and lung. Our results not only provide a mechanism for the formation of a series of mammalian metabolites of linoleic and arachidonic acids but also offer an estimate of the yield of peroxyl radicals generated during the process.  相似文献   

2.
Acid treatment of (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid in tetrahydrofuran-water solvent afforded mainly (11R,12R,13S)-(Z)-12,13-epoxy-11-hydroxy-9-octadecenoic acid, diastereomeric (Z)-11,12,13-trihydroxy-9-octadecenoic acids and four isomers of (E)-9,12,13(9,10,13)-trihydroxy-10(11)-octadecenoic acid. Other minor products were oxooctadecadienoic, (E)-9(13)-hydroxy-13(9)-oxo-10(11)-octadecenoic and (E)-12-oxo-10-dodecenoic acids. A heterolytic mechanism for acid catalysis was indicated, even though most of the products characterized also have been observed as a result of homolytic decomposition of the hydroperoxide via an oxy radical. Most of the products found in this study have been observed as metabolites of (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadenoic acid in biological systems, and analogous compounds have been reported as metabolites of (12S)-(5Z,8Z,10E, 14Z)-12-hydroperoxy-5,8,10,14-hydroperoxy-5,8,10,14-eicosatetraenoic acid in either blood platelets or lung tissue.  相似文献   

3.
Oxygenation of linoleic acid by Aspergillus terreus was studied with LC-MS/MS. 9(R)-Hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HpODE) was identified along with 10(R)-hydroxy-8(E),12(Z)-octadecadienoic acid and variable amounts of 8(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. 9R-HpODE was formed from [11S-2H]18:2n − 6 with loss of the deuterium label, suggesting antarafacial hydrogen abstraction and oxygenation. Two polar metabolites were identified as 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (α-ketol) and 13-hydroxy-10-oxo-11(E)-octadecenoic acid (γ-ketol), likely formed by spontaneous hydrolysis of an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. α-Linolenic acid and 20:2n − 6 were oxidized to hydroperoxy fatty acids at C-9 and C-11, respectively, but α- and γ-ketols of these fatty acids could not be detected. The genome of A. terreus lacks lipoxygenases, but contains genes homologous to 5,8-linoleate diol synthases and linoleate 10R-dioxygenases of aspergilli. Our results demonstrate that linoleate 9R-dioxygenase linked to allene oxide synthase activities can be expressed in fungi.  相似文献   

4.
An unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid, was recently identified as the product formed from 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid in the presence of corn (Zea mays L.) hydroperoxide dehydrase (M. Hamberg (1987) Biochim. Biophys. Acta 920, 76-84). The present paper is concerned with the spontaneous decomposition of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in acetonitrile solution. Two major products were isolated and characterized, i.e. macrolactones 12-keto-9(Z)-octadecen-11-olide and 12-keto-9(Z)-octadecen-13-olide.  相似文献   

5.
Seeds of broad bean (Vicia faba L.) contain a hydroperoxide-dependent fatty acid epoxygenase. Hydrogen peroxide served as an effective oxygen donor in the epoxygenase reaction. Fifteen unsaturated fatty acids were incubated with V. faba epoxygenase in the presence of hydrogen peroxide and the epoxy fatty acids produced were identified. Examination of the substrate specificity of the epoxygenase using a series of monounsaturated fatty acids demonstrated that (Z)-fatty acids were rapidly epoxidized into the corresponding cis-epoxy acids, whereas (E)-fatty acids were converted into their trans-epoxides at a very slow rate. In the series of (Z)-monoenoic acids, the double bond position as well as the chain length influenced the rate of epoxidation. The best substrates were found to be palmitoleic, oleic, and myristoleic acids. Steric analysis showed that most of the epoxy acids produced from monounsaturated fatty acids as well as from linoleic and α-linolenic acids had mainly the (R),(S) configuration. Exceptions were C18 acids having the epoxide group located at C-12/13, in which cases the (S),(R) enantiomers dominated. 13(S)-Hydroxy-9(Z),11(E)-octadecadienoic acid incubated with epoxygenase afforded the epoxy alcohol 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as the major product. Smaller amounts of the diastereomeric epoxy alcohol 9(R),10(S)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as well as the α,β-epoxy alcohol 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid were also obtained. The soluble fraction of homogenate of V. faba seeds contained an epoxide hydrolase activity that catalyzed the conversion of cis-9,10-epoxyoctadecanoic acid into threo-9,10-dihydroxyoctadecanoic acid.  相似文献   

6.
Treatment of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate with vanadium oxyacetylacetonate led to the formation of two diastereometric α,β-epoxy alcohols, i.e. methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate and methyl 11(S), 12(S)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. The epoxy alcohols underwent spontaneous hydrolysis into isomeric trihydroxyesters. The first mentioned epoxy alcohol afforded methyl 9(R), 12(S), 13(S)- and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoates as major hydrolysis products whereas the latter epoxy alcohol afforded methyl 9(R), 12(R), 13(S)- and methyl 9(S), 12(R)-13(S)-trihydroxy-10(E)-octadecenoates as major compounds. Smaller amounts of diastereomeric methyl 11,12,13-trihydroxy-9-octadecenoates were also formed from both epoxy alcohols. The vanadium-catalyzed conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13(S)HPOD) (methyl ester) into α,β-epoxy alcohols and their further conversion into trihydroxy derivatives offers a model system for similar transformations of certain poly-unsaturated fatty acids recently described in the fungus, Saprolegnia parasitica.  相似文献   

7.
Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (α- and γ-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein.  相似文献   

8.
Allylic hydroxylated derivatives of the C18 unsaturated fatty acids were prepared from linoleic acid (LA) and conjugated linoleic acids (CLAs). The reaction of LA methyl ester with selenium dioxide (SeO2) gave mono-hydroxylated derivatives, 13-hydroxy-9Z,11E-octadecadienoic acid, 13-hydroxy-9E,11E-octadecadienoic acid, 9-hydroxy-10E,12Z-octadecadienoic acid and 9-hydroxy-10E,12E-octadecadienoic acid methyl esters. In contrast, the reaction of CLA methyl ester with SeO2 gave di-hydroxylated derivatives as novel products including, erythro-12,13-dihydroxy-10E-octadecenoic acid, erythro-11,12-dihydroxy-9E-octadecenoic acid, erythro-10,11-dihydroxy-12E-octadecenoic acid and erythro-9,10-dihydroxy-11E-octadecenoic acid methyl esters. These products were purified by normal-phase short column vacuum chromatography followed by high-performance liquid chromatography (HPLC). Their chemical structures were characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR). The allylic hydroxylated derivatives of LA and CLA exhibited moderate in vitro cytotoxicity against a panel of human cancer cell lines including chronic myelogenous leukemia K562, myeloma RPMI8226, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cells (IC50 10-75 μM). The allylic hydroxylated derivatives of LA and CLA also showed toxicity to brine shrimp with LD50 values in the range of 2.30-13.8 μM. However these compounds showed insignificant toxicity to honeybee at doses up to 100 μg/bee.  相似文献   

9.
Reduction of peroxide molecular species is an essential function in living organisms. In previous studies, we proposed a new function for the sialic acid N-acetylneuraminic acid (Neu5Ac)—that of antioxidant/hydrogen peroxide scavenging agent. On the basis of the reaction scheme, Neu5Ac is thought to act as a general antioxidant of all hydroperoxide-type species (R-OOHs). The concentration of tert-butyl hydroperoxide (t-BuOOH) decreased after co-incubation with N-acetylneuraminic acid. Neu5Ac also decreased the R-OOH concentration in solutions of peroxylinolenic acid (13(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid, HpODE) and peroxyarachidonic acid (15(S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid, HpETE)—two lipid hydroperoxides that participate in many physiological events. Moreover, the cytotoxicity of both these lipid hydroperoxides was attenuated by reaction with Neu5Ac acid. Our results suggest that N-acetylneuraminic acid is a potential antioxidant of most hydroperoxides that accumulate in organisms.  相似文献   

10.
In previous work with soybean (Glycine max), it was reported that the initial product of 3Z-nonenal (NON) oxidation is 4-hydroperoxy-2E-nonenal (4-HPNE). 4-HPNE can be converted to 4-hydroxy-2E-nonenal by a hydroperoxide-dependent peroxygenase. In the present work we have attempted to purify the 4-HPNE-producing oxygenase from soybean seed. Chromatography on various supports had shown that O2 uptake with NON substrate consistently coincided with lipoxygenase (LOX)-1 activity. Compared with oxidation of LOX's preferred substrate, linoleic acid, the activity with NON was about 400- to 1000-fold less. Rather than obtaining the expected 4-HPNE, 4-oxo-2E-nonenal was the principal product of NON oxidation, presumably arising from the enzyme-generated alkoxyl radical of 4-HPNE. In further work a precipitous drop in activity was noted upon dilution of LOX-1 concentration; however, activity could be enhanced by spiking the reaction with 13S-hydroperoxy-9Z,11E-octadecadienoic acid. Under these conditions the principal product of NON oxidation shifted to the expected 4-HPNE. 4-HPNE was demonstrated to be 83% of the 4S-hydroperoxy-stereoisomer. Therefore, LOX-1 is also a 3Z-alkenal oxygenase, and it exerts the same stereospecificity of oxidation as it does with polyunsaturated fatty acids. Two other LOX isozymes of soybean seed were also found to oxidize NON to 4-HPNE with an excess of 4S-hydroperoxy-stereoisomer.  相似文献   

11.
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of 1,4-dienes to produce conjugated diene hydroperoxides. The best substrates are anions of fatty acids; for example, linoleate is converted to 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate. The manner in which SBLO-1 binds substrates is uncertain. In the present work, it was found that SBLO-1 will oxygenate linoleyltrimethylammonium ion (LTMA) to give primarily13(S)-hydroperoxy-9(Z),11(E)-octadecadienyltrimethylammonium ion. The rate of this process is about the same at pH 7 and pH 9 and is about 30% of the rate observed with linoleate at pH 9. At pH 7, SBLO-1 oxygenates linoleyldimethylamine (LDMA) to give primarily 13(S)-hydroperoxy-9(Z),11(E)-octadecadienyldimethylamine. The oxygenation of LDMA occurs at about the same rate as LTMA at pH 7, but more slowly at pH 9. The results demonstrate that SBLO-1 will readily oxygenate substrates in which the carboxylate of linoleate is replaced with a cationic group, and the products of these reactions have the same stereo- and regiochemistry as the products obtained from fatty acid substrates.  相似文献   

12.
The potato tuber lipoxygenase preparations convert α-linolenic acid not only to 9(S)-HPOTE, but also to some more polar metabolites. Two of these polar products, I and II, with ultraviolet absorbance maxima at 267 nm were purified by HPLC. It was found that metabolites I and II have, respectively, one and two hydroperoxy groups. Products of NaBH4 reduction of both I and II were identified by their chemical ionization and electron impact mass spectra and by 1H-NMR spectra as 9,16-dihydroxy-10(E), 12(Z), 14(E)-octadecatrienoic acid. The obtained results suggest that compound II is 9,16-dihydroperoxy-10(E), 12(Z), 14(E)-octadecatrienoic acid and product I is a mixture of two positional isomers, 9-hydroxy-16-hydroperoxy-10(E),12(Z),14(E)-octadecatrienoic and 9-hydroperoxy-16-hydroxy-10(E),12(Z), 14(E)-octadecatrienoic acids. Lipoxygenase converts efficiently [14C]9-HOTE into product I. Also, both metabolites I and II are the products of double dioxygenation. The second oxygenation at C-16 position as well as the first one at C-9 is controlled by lipoxygenase.  相似文献   

13.
The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.  相似文献   

14.
Summary Previously, we reported the isolation of a new microbial strain,Flavobacterium sp. DS5 (NRRL B-14859) which converted oleic and linoleic acids to their corresponding 10-keto- and 10--ydroxy-fatty acids. The hydration enzyme seemed to be specific to the C-10 position. Now we have identified, by GC/MS, NMR, and FTIR, the bioconversion products from -linolenic acid as 10-hydroxy-12(Z), 15(Z)-octadecadienoic acid and from -linolenic acid as 10-hydroxy-6(Z), 12(Z)-octadecadienoic acid. Products from 9(E)-unsaturated fatty acids were also identified as their corresponding 10-hydroxy or 10-keto fatty acids. From these results, it is concluded that strain DS5 hydratase is indeed a C-10 positional-specific enzyme and prefers an 18-carbon mono-unsaturated fatty acid. Among the C18 unsaturated fatty acids, an additional double bond on either side of the C-9 position lowers the enzyme hydration activity.  相似文献   

15.
Lipid peroxidation in tissue and in tissue fractions represents a degradative process, which is the consequence of the production and the propagation of free radical reactions primarily involving membrane polyunsaturated fatty acids, and has been implicated in the pathogenesis of numerous diseases, including systemic lupus erythematosus (SLE). We have found that bovine serum albumin incubated with peroxidized polyunsaturated fatty acids significantly cross-reacted with the sera from MRL-lpr mice, a representative murine model of SLE. To identify the active substances responsible for the generation of autoantigenic epitopes recognized by the SLE sera, we performed the activity-guiding separation of a principal source from 13-hydroperoxy-9Z,11E-octadecadienoic acid and identified 4-oxo-2-nonenal (ONE), a highly reactive aldehyde originating from the peroxidation of ω6 polyunsaturated fatty acids, as the source of the autoantigenic epitopes. When the age-dependent change in the antibody titer against the ONE-modified protein was measured in the sera from MRL-lpr mice and control MRL-MpJ mice, all of the MRL-lpr mice developed an anti-ONE titer, which was comparable with the anti-DNA titer. Strikingly, a subset of the anti-DNA monoclonal antibodies generated from the SLE mice showing recognition specificity toward DNA cross-reacted with the ONE-specific epitopes. Furthermore, these dual-specific antibodies rapidly bound and internalized into living cells. These findings raised the possibility that the enhanced lipid peroxidation followed by the generation of ONE may be involved in the pathogenesis of autoimmune disorders.  相似文献   

16.
Enzymes of CYP74 family play the central role in the biosynthesis of physiologically important oxylipins in land plants. Although a broad diversity of oxylipins is known in the algae, no CYP74s or related enzymes have been detected in brown algae yet. Cloning of the first CYP74-related gene CYP5164B1 of brown alga Ectocarpus siliculosus is reported in present work. The recombinant protein was incubated with several fatty acid hydroperoxides. Linoleic acid 9-hydroperoxide (9-HPOD) was the preferred substrate, while linoleate 13-hydroperoxide (13-HPOD) was less efficient. α-Linolenic acid 9- and 13-hydroperoxides, as well as eicosapentaenoic acid 15-hydroperoxide were inefficient substrates. Both 9-HPOD and 13-HPOD were converted into epoxyalcohols. For instance, 9-HPOD was turned primarily into (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both epoxide and hydroxyl oxygen atoms of the epoxyalcohol were incorporated mostly from [18O2]9-HPOD. Thus, the enzyme exhibits the activity of epoxyalcohol synthase (EsEAS). The results show that the EsEAS isomerizes the hydroperoxides into epoxyalcohols via epoxyallylic radical, a common intermediate of different CYP74s and related enzymes. EsEAS can be considered as an archaic prototype of CYP74 family enzymes.  相似文献   

17.
The appearance and subsequent disappearance of lipoxygenase activity at pH 6.8 in germinated cotyledons of soybean (Glycine max [L.]) was shown using a variant soybean cultivar (Kanto 101) that lacks the two lipoxygenase isozymes, L-2 and L-3, that are present in dry seeds of a normal soybean cultivar (Enrei). Three new lipoxygenases, designated lipoxygenase L-4, L-5, and L-6, were purified using anionic or cationic ion exchange chromatography. The major lipoxygenase in 5-day-old cotyledons of the variant soybean was lipoxygenase L-4. Lipoxygenases L-5 and L-6 preferentially produced 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid (13S-HPOD) as a reaction product of linoleic acid, whereas lipoxygenase L-4 produced both 13S-HPOD and 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid. All three isozymes have pH optima of 6.5, no activity at pH 9.0, and preferred linolenic acid to linoleic acid as a substrate. Partial amino acid sequencing of lipoxygenase L-4 showed that this isozyme shares amino acid sequence homology with lipoxygenases L-1, L-2, and L-3 but is not identical to any of them. This indicates that a new lipoxygenase, L-4, is expressed in cotyledons.  相似文献   

18.
The trimethylsilyl (TMS) peroxides/esters of the fatty acid hydroperoxides (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD) and (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) were subjected to gas chromatography-mass spectrometry and products formed by thermal rearrangements were identified. The main products were decadienals and the TMS derivatives of 13-oxo-9,11-tridecadienoic acid, epoxyalcohols, hemiacetals, and ketodienes. Oxy radicals as well as epoxyallylic radicals served as intermediates in the formation of these compounds. The thermal TMS peroxide conversions documented provided biomimetic models for enzymatic conversions of fatty acid hydroperoxides and also offered a method to generate an array of oxylipin derivatives of value as reference compounds in GC-MS studies.  相似文献   

19.
In microorganisms hydroxy fatty acids are produced from the biotransformation of unsaturated fatty acids. Such compounds belong to a class of oxylipins which are reported to perform a variety of biological functions such as anti-inflammatory or cytotoxic activity. These compounds have been found in rice and timothy plants after being infected by specific fungus. When grown in submerged culture with linoleic acid, Pseudomonas 42A2 accumulated in the supernatant several hydroxy fatty acids. In this work LC–MS/MS has been used to elucidate the structure of the components form the organic extract: 9-hydroxy-10,12-octadecadienoic acid; 13-hydroxy-9,11-octadecadienoic acid; 7,10-dihydroxy-8E-octadecenoic acid; 9,10,13-trihydroxy-11-octadecenoic acid and 9,12,13-trihydroxy-10-octadecenoic acid. Antimicrobial activity against several pathogenic fungal strains is presented: MIC (μg/mL) Verticillium dhaliae, 32; Macrophonia phaesolina, 32; Arthroderma uncinatum, 32; Trycophyton mentagrophytes, 64.  相似文献   

20.
Linoleic acid is an important essential fatty acids of leukocyte cell membrane phospholipids from some animals, e.g. from pigs and rabbits, and is a known substrate for lipoxygenase(s), especially in plant systems. Lipoxygenase activity has also been well documented in leukocytes using arachidonic acid as a substrate. These findings and our own interest in the fate of linoleic acid have prompted us to investigate the biotransformation of this essential fatty acids in leukocytes.Porcine leukocytes were isolated from whole blood by dextrane precipitation of the erythrocytes and by centrifugation. Broken cells were incubated with exogenous linoleic acid and four major biotransformation products, X1, X2, X3 and X4, were formed. Following isolation by silicagel column chromatography and thin layer chromatography, the products were derivatized and characterized by GC/MS. Derivatization included hydrogenation, methyl ester formation, n-butyl boronate formation and trimethylsilylation, and various types of derivatives were made in order to facilitate the structure elucidation. The major product X1, which represented 60.5% of the total metabolites formed, was identified as 13-hydroxy-9,11-octadecadienoic acid. Product X2 (16.2%) was shown to be 11-hydroxy-12,13-epoxy-9-octadecenoic acid. Products X3 and X4 (respectively 5.2 and 7.5%) resulted in identical thermore, each of the products X3 and X4 was shown to be a mixture of two positional isomers, i.e. of 9,12,13-trihydroxy-10-octadecenoic acid (70%) and 9,10,13-trihydroxy-12-octadecenoic acid (30%). With regard to the structure elucidation of the latter isomers, the mixed hydrogenated, n-butylboronate, methyl ester, TMS-ether derivatives were shown to be of particular value for the determination of the vicinal diol position.The metabolism of linoleic acid in porcine leukocytes is analogous to that by cereal lipoxygenases. A major difference however is that porcine leukocyte lipoxygenase predominantly yields products, which arise through 13-lipoxygenation, whereas, in cereals, transformation products of 9-hydroperoxy-10,12-octadecadienoic acid are formed to the same extent as metabolites of 13-hydroperoxy-9,11-octadecadienoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号