首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dudy Bar-Zvi  Noun Shavit 《BBA》1983,724(3):299-308
Limited modification of thylakoid membranes with glutaraldehyde inhibits the Pi-ATP exchange reaction much more than ATP synthesis or hydrolysis. More extensive modification of the membranes results in the inhibition of all activities of the ATP synthetase, but does not affect electron transport. Limited modification also does not have much effect on the tight binding of [3H]ADP or the ΔpH supported by ATP hydrolysis. The modification affects the catalytic process itself and not the activation of the latent enzyme. Cross-linking between thylakoid polypeptides is observed only after extensive treatment with glutaraldehyde, while limited modification does not result in cross-linking between polypeptides. The differential inhibition of the Pi-ATP exchange relative to ATP hydrolysis can be explained by the decrease in only one of the kinetic rate constants involved in these reactions. However, the relative insensitivity of photophosphorylation to the modification suggests that different enzyme conformations may participate in phosphorylation (light) and ATP hydrolysis or Pi-ATP exchange (dark).  相似文献   

2.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

3.
When glutamine synthetase is incubated in a mixture containing adenylyltrans-ferase, the regulatory protein (PII) and several effectors, including ATP, UTP, Pi, α-ketoglutarate, glutamine, and Mg2+ and/or Mn2+, it ultimately assumes a constant state of adenylylation. The final state of adenylylation (i.e., the number of adenylylated subunits per mole of enzyme) can vary from 0 to 12 and is specified by the concentrations and ratios of the various effectors and by the extent of uridylylation of PII (i.e., the PIIA:PIID ratio). Under otherwise identical conditions, increasing the concentrations of either UTP, Pi, α-ketoglutarate, Mn2+, or PIID decreases the state of adenylylation finally reached, whereas increasing the concentrations of either glutamine, ATP, or Pua increases the final state of adenylylation. The final state of adenylylation is independent of the concentrations of glutamine synthetase, adenylyltransferase, and PII (but not of the PIIA:PIIDratio), and also of the initial average state of adenylylation of glutamine synthetase. Various lines of evidence show that the final state of adenylylation represents a dynamic steady state in which the rates of adenylylation and deadenylylation of glutamine synthetase are equal. It is concluded that the regulation of glutamine synthetase activity by the adenylylation mechanism utilizes a significant amount of ATP energy, but this amount is less than 0.1% that utilized directly by the glutamine synthetase in the synthesis of glutamine.  相似文献   

4.
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression inEscherichia coli of a chimera protein involving Pic and ATP synthase subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.  相似文献   

5.
δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS) catalyses, via the protein thiotemplate mechanism, the nonribosomal biosynthesis of the penicillin and cephalosporin precursor tripeptide δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV). The complete and fully saturated biosynthetic system approaches maximum rate of product generation with increasing ATP concentration. Nonproductive adenylation of ACVS, monitored utilising the ATP–[32P]PPi exchange reaction, has revealed substrate inhibition with ATP. The kinetic inhibition pattern provides evidence for the existence of a second nucleotide-binding site with possible implication in the regulatory mechanism. Under suboptimal reaction conditions, in the presence of MgATP2?, l-Cys and inorganic pyrophosphatase, ACVS forms adenosine(5′)tetraphospho(5′)adenosine (Ap4A) from the reverse reaction of adenylate formation involving a second ATP molecule. The potential location of the second ATP binding site was deduced from sequence comparisons and molecular visualisation in conjunction to data obtained from biochemical analysis.  相似文献   

6.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

7.
Yukiko Tokumitsu  Michio Ui 《BBA》1973,292(2):325-337
1. The mitochondrial level of AMP gradually diminishes during incubation of mitochondria with glutamate but does not with succinate. This decline of AMP, associated with stoichiometric increase in ADP and/or ATP, is accelerated by the addition of electron acceptors or 2,4-dinitrophenol, while arsenite, arsenate and rotenone are inhibitory. These results are in agreement with the view that AMP is phosphorylated to ADP in the inner space of rat liver mitochondria via succinyl-CoA synthetase (succinate: CoA ligase (GDP), EC 6.2.1.4) and GTP:AMP phosphotransferase dependent on the oxidation of 2-oxoglutarate, which is promoted by the transfer of electron from NADH to the respiratory chain.2. Studies of the periodical changes of chemical quantities of adenine nucleotides as well as of their labelling with 32Pi reveals the following characteristics concerning mitochondrial phosphorylation. (i) In contrast to the mass action ratio of ATP to ADP, the ratio of ADP to AMP is not affected by the intramitochondrial concentration of Pi. (ii) 32Pi, externally added, is incorporated into ADP much more slowly than into γ-phosphate of ATP. (iii) Conversely, ATP loses its radioactivity from γ-phosphate position more rapidly than [32P]ADP when 32P-labelled mitochondria are incubated with non-radioactive Pi.3. In order to elucidate the above characteristic properties of phosphorylation, a hypothetical scheme is proposed which postulates the two separate compartments in the intramitochondrial pool of Pi; one readily communicates with external Pi and is utilized for the phosphorylation of ADP in oxidative phosphorylation, while the other less readily communicates with external Pi and serves as the precursor of ADP via succinyl-CoA synthetase and GTP:AMP phosphotransferase.  相似文献   

8.
ATP sulfurylase from Penicillium chrysogenum was purified to homogeneity. The enzyme binds 8 mol of free ATP (Ks = 0.53 mM) or AMP (Ks = 0.50 mM) per 440,000 g. The results are consistent with our earlier report that the enzyme is composed of eight identical subunits of Mr 55,000 (J. W. Tweedie and I. H. Segel, 1971, Prep. Biochem. 1, 91–117; J. Biol. Chem. 246, 2438–2446). In the absence of cosubstrates, the purified enzyme catalyzes the hydrolysis of MgATP (to AMP and MgPPi) and adenosine 5′-phosphosulfate (APS) (to AMP and SO42?). MgATP hydrolysis is inhibited by nonreactive sulfate analogs such as nitrate, chlorate, and formate (uncompetitive with MgATP). In spite of the hydrolytic reactions it is possible to observe the binding of MgATP and APS to the enzyme in a qualitative (nonequilibrium) manner. Neither inorganic sulfate (the cosubstrate of the forward reaction) nor formate or inorganic phosphate (inhibitors competitive with sulfate) will bind to the free enzyme in detectable amounts in the absence or in the presence of Mg2+, Ca2+, free ATP, or a nonreactive analog of MgATP such as Mg-α,β-methylene-ATP. Similarly, inorganic pyrophosphate (the cosubstrate of the reverse reaction) will not bind in the absence or in the presence of Mg2+ or Ca2+. The induced binding of 32Pi (presumably to the sulfate site) can be observed in the presence of MgATP. The results are consistent with the obligately ordered binding sequence deduced from the steady-state kinetics (J. Farley et al., 1976, J. Biol. Chem. 251, 4389–4397) and suggest that the subsites for SO2?4 or MgPPi appear only after nucleotide cleavage to form E~AMP · MgPPi or E~AMP · SO4 complexes. The suggestion is supported by the relative values of Kia (ca. 1 mm for MgATP) and Kiq (ca. 1 αm for APS) and by the inconsistent value of k?1 calculated from VfKiaKmA (The value is considerably less than Vr) Purified ATP sulfurylase will also catalyze a Mg32PPi-MgATP exchange in the absence of SO42?. A 35SO42?-APS exchange could not be demonstrated in the absence or presence of MgPPi. This result was not unexpected: The rate of APS hydrolysis (or conversion to MgATP) is extremely rapid compared to the expected exchange rate. Also, the pool of APS at equilibrium is extremely small compared to the sulfate pool. The V values for molybdolysis, APS hydrolysis (in the absence of PPi), ATP synthesis (from APS + MgPPi), and Mg32PPi-MgATP exchange at saturating sulfate are all about equal (12–19 μmol × min?1 × mg of enzyme?1). The rates of Mg32PPi-MgATP exchange in the absence of sulfate, APS synthesis (from MgATP + sulfate), and MgATP hydrolysis (in the absence of sulfate) are considerably slower (0.10 – 0.35 μmol × min?1 × mg of enzyme?1). These results and the fact that k4 calculated from VrKiqKmQ is considerably larger than Vf suggest that the rate-limiting step in the overall forward reaction is the isomerization reaction E~AMP-SO2?4 → EAPS. In the reverse direction the rate-limiting step may be SO2?4 release or isomerization of the E~AMP · MgPPi · SO42? complex. (The reaction appears to be rapid equilibrium ordered.) Reactions involving the synthesis or cleavage of APS are specific for Mg2+. Reactions involving the synthesis or cleavage of ATP will proceed with Mg2+, with Mn2+, and, at a lower rate, with Co2+. The results suggest that the enzyme possesses a Mg2+-preferring divalent cation (activator) binding site that is involved in APS synthesis and cleavage and is distinct from the MeATP or MePPi site. The equilibrium binding of about one atom of 45Ca2+ per subunit (possibly to the activator site) could be demonstrated (Ks = 1.4 mM).  相似文献   

9.
1,N6-Ethenoadenosine diphosphate (ϵ-ADP) inhibits reverse electron flow (succinate → NAD+ driven by ATP) by competing with ATP, in contrast to ADP which we have shown previously to be a noncompetitive inhibitor. From these and other data it is concluded that the noncompetitive inhibition noted with ADP results from a combination of competitive inhibition plus non- or uncompetitive inhibition, the former occuring at a relatively nonspecific catalytic site and the latter at an extracatalytic site apparently quite specific for ADP. ADP, which stimulates ATP ⇌ H2O and Pi ⇌ H2O exchanges appears to be necessary for inhibition by arsenate of these exchanges. It is suggested that the ATP-supported Pi ⇌ H2O exchange may be predominantly of the medium or intermediate type, depending on the concentrations of the Mg2+ complexes of ADP and Pi. Thus only exchanges involving medium ADP and Pi would be expected to show arsenate sensitivity.  相似文献   

10.
《FEBS letters》1987,224(2):348-352
It is possible to obtain synthesis of PPi by artifical ion potentials in Rhodospirillum rubrum chromatophores. PPi can be formed by K+-diffusion gradients (Δψ), H+ gradients (ΔpH) or a combination of both. In contrast, ATP can only be synthesized by imposed Δψ or Δψ+ΔpH. For ATP formation there is also a threshold value of K+ concentration below which synthesis of ATP is not possible. Such a threshold is not found for PPi formation. Both PPi and ATP syntheses are abolished by addition of FCCP or nigericin and only marginally affected by electron transport inhibitors. The synthesis of PPi can be monitored for several minutes before it ceases, while ATP production stops within 30 s. As a result the maximal yield of PPi is 200 nmol PPi/μmol BChl, while that of ATP is no more than 25 nmol ATP/μmol BChl. The initial rates of syntheses were 0.50 μmol PPi/μmol BChl per min and 2.0 μmol ATP/μmol per min, respectively. These rates are approx. 50 and 20% of the respective photophosphorylation rates under saturating illumination.  相似文献   

11.
Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 104 colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PPi and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PPi-recycling loop was completed using ATP sulfurylase and adenosine 5′ phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water.  相似文献   

12.
ABC transporters constitute one of the most abundant membrane transporter families. The most common feature shared in the family is the highly conserved nucleotide binding domains (NBDs) that drive the transport process through binding and hydrolysis of ATP. Molecular dynamics simulations are used to investigate the effect of ATP hydrolysis in the NBDs. Starting with the ATP-bound, closed dimer of MalK, four simulation systems with all possible combinations of ATP or ADP-Pi bound to the two nucleotide binding sites are constructed and simulated with equilibrium molecular dynamics for ∼70 ns each. The results suggest that the closed form of the NBD dimer can only be maintained with two bound ATP molecules; in other words, hydrolysis of one ATP can lead to the opening of the dimer interface of the NBD dimer. Furthermore, we observed that the opening is an immediate effect of hydrolysis of ATP into ADP and Pi rather than the dissociation of hydrolysis products. In addition, the opening is mechanistically triggered by the dissociation of the LSGGQ motif from the bound nucleotide. A metastable ADP-Pi bound conformational state is consistently observed before the dimer opening in all the simulation systems.  相似文献   

13.
(Na+ + K+)-ATPase can be phosphorylated by its substrate ATP as well as by its product inorganic phosphate. The maximal capacity for phosphorylation by either of these two substances is one mol phosphate per mol enzyme. In order to investigate whether the enzyme molecule possesses only one phosphorylation site common to ATP and Pi, or two phosphorylation sites, one for ATP and one for Pi, dual phosphorylation of the enzyme has been carried out. Under conditions, which are maximally favourable for each type of phosphorylation, successive phosphorylation by Pi and ATP leads to a maximal incorporation of only one mol phosphate per mol enzyme. The phosphorylation capacity for ATP decreases by the same amount as the Pi-phosphorylation level increases, without an effect on the apparent affinity for ATP.The results can be explained by assuming either a single common phosphorylation site for Pi and ATP, or a conformational change of the enzyme following phosphorylation by Pi, which excludes phosphorylation by ATP.  相似文献   

14.
Oligo(2'-5')adenylate synthetase in human lymphoblastoid cells   总被引:1,自引:0,他引:1  
The enzyme oligo(2′–5′)adenylate synthetase, when activated by double-stranded RNA, polymerizes ATP into the novel oligonucleotide (2′–5′)ppp(Ap)nA. We describe conditions for assay of this enzyme in crude extracts of a human lymphoblastoid cell line, Namalwa. The production of (2′–5′)ppp(Ap)nA by Namalwa extracts was 3–5 times greater than the production by extracts of interferon pretreated mouse L cells, and 700 fold higher than the production by extracts of untreated mouse L cells. The relatively high level of oligo(2′–5′)adenylate synthetase in Namalwa cells was not attributable solely to their constitutive secretion of low levels of interferon. Analysis of the size distribution of the oligomers formed at different times suggested that the enzyme can add ATP to a free pppApA. Infection by Newcastle disease virus or treatment with interferon raised the apparent synthetase levels only marginally. Experiments that employed antibody to interferon suggested that the interferon must be externalized from the NDV-infected cell to induce maximal synthetase levels.  相似文献   

15.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

16.
Adenylyl imidodiphosphate (AMP-PNP), and analog of adenosine triphosphate (ATP), is a potent competitive inhibitor of mitochondrial ATPase activity. It inhibits both the soluble oligomycin-insensitive ATPase (Ki = 9.2 × 10?7 M) and the bound oligomycin-sensitive APTase (Ki = 1.3 × 10?6 M). ATPase activity of inside-out submitochondrial preparations are more sensitive to AMP-PNP in the presence of an uncoupler (Ki = 2.0 × 10?7 M). Mitochondrial ATP-dependent reactions (reversed electron transfer and potassium uptake) do not proceed if ATP is replaced with AMP-PNP; however, the analog does affect these systems. Oxidative phosphorylation of whole mitochondria and submitochondrial preparations were unaffected by AMP-PNP.  相似文献   

17.
S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10–250 μM the Km for methionine was 20 μM, and this changed to 200 μM for the range 0.5–5.0 mM. In the range 10–250 μM the Km for ATP was 53 μM, and this changed to 1.75 mM for the range 0.5–5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 μM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-α-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration ≈ 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism.  相似文献   

18.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1–2 μM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240–300 μM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This “tightly bound” ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetic studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

19.
This paper surveys several aspects of the consequences of ATP hydrolysis associated with actin polymerization, and their physiological implications. ATP hydrolysis occurs on F-actin in two subsequent reactions, cleavage of ATP followed by the slower release of Pi. The latter reaction is linked to a conformation change of the actin subunit that causes a destabilization of the actin-actin interactions in the filament, i.e., a structural change of the filament. The nature of the nucleotide bound to terminal subunits therefore affects the dynamics of actin filaments. It is shown that this regulation is different at the two ends, terminal F-ADP-Pi subunits being present at steady state at the barbed end, while F-ADP-subunits are present at the pointed end. While cleavage of ATP on F-actin is irreversible, Pi release is reversible, which allows the regulation of filament dynamics by cellular Pi. The nature of the divalent metal ion — Ca2+ or Mg2+ — tightly bound to actin, in direct interaction with ATP, also affects the conformation of actin and the rate of ATP hydrolysis, therefore regulating actin dynamics. Finally, the rate of nucleotide exchange on G-actin is relatively slow, which allows the critical concentration to increase with the number of filaments in ATP, a property largely used by the cell via the action of severing proteins.  相似文献   

20.
The three coupling segments of the respiratory chain of bovine heart mito-chondria were examined individually by steady-state kinetic methods to determine whether or not freely diffusible intermediates occur between the energy-yielding and energy-consuming steps involved in the oxidative phosphorylation of extramitochondrial ADP. The principal method employed was the dual inhibitor technique, for which an appropriate model is provided. The results indicate that in accordance with the chemiosmotic theory the intermediate reactants that link the energy-yielding rotenone-sensitive (Site 1), cytochromebc 1 (Site 2), and cytochromeaa 3 (Site 3) reactions of the respiratory chain to the energy-consuming ATP synthetase, AdN transport, and Pi transport reactions are freely diffusible (delocalized). Site 2 was found to differ from the others in regard to the mechanism by which the energy-linked respiratory chain reaction is controlled by the energy-consuming steps. Whereas the Site 1 and Site 3 respiratory chain reactions are controlled primarily by the thermodynamic mechanism of reaction reversal, the Site 2 respiratory reaction is controlled primarily by a kinetic mechanism in which an intermediate that links it to the energy-consuming steps inhibits it allosterically. From the effects of nigericin and valinomycin the allosteric intermediate appears to be the electrical component of the protonmotive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号