首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of MHCl(CO)(PPh3)3 (M=Ru, Os) with (CH2=CH)SnR3 is a good general route to the coordinatively unsaturated osmium and ruthenium stannyl complexes M(SnR3)Cl(CO)(PPh3)2 (1: M=Ru, R=Me; 2: M=Ru, R = n-butyl; 3: M=Ru, R = p-tolyl; 4: M=Os, R=Me). These coordinatively unsaturated complexes readily add CO and CN-p-tolyl to form the coordinatively saturated compounds M(SnR3)Cl(CO)L(PPh3)2 (5: M=Ru, R=Me, L=CO; 6: M=;Ru, R = n-butyl, L=CO; 7: M=Ru, R = p-tolyl, L=CO; 8: M=Os, R=Me, L=CO; 9: M=Ru, R=Me, L=CN-p-tolyl; 10: M=Ru, R = n-butyl, L=CN-p-tolyl; 11: M=Os, R=Me, L=CN-p-tolyl). In addition, the chloride ligand in Ru(SnR3)Cl(CO)(PPh3)2 proves to be labile and treatment with the potentially bidentate anionic ligands, dimethyldithiocarbamate or diethyldithiocarbamate, affords the coordinatively saturated compounds Ru(SnR3)(η2-S2CNR′2)(CO)(PPh3)2 (12: R=Me, R′ = Me; 13: R=Me, R′ = Et; 14: R = n-butyl, R′ = Me; 15: R = p-tolyl, R′ = Me; 16: R = p-tolyl, R′ = Et). Chloride is also displaced by carboxylates forming the six-coordinate compounds Ru(SnR3)(η2-O2CR′)(CO)(PPh3)2 (17: R=Me, R′ = H; 18: R=Me, R′ = Me; 19: R=Me, R′ = Ph; 20: R = n-butyl, R′ = Me; 21: R = p-tolyl, R′ = Me). IR and 1H NMR spectral data for all the new compounds and 31P and 119Sn NMR spectral data for selected compounds are reported.  相似文献   

2.
The dinuclear arene ruthenium complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}]2 (1) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}]2 (2) have been obtained by dehydrogenation of the corresponding cyclohexadiene derivative with ruthenium chloride hydrate. The single-crystal X-ray structure analysis of 2 shows the arene ligands to be involved in slipped-parallel π-π stacking interactions with neighbouring molecules, thus forming infinite chains along the b-axis. The dinuclear complexes 1 and 2 react with two equivalents of triphenylphosphine (PPh3) to give in excellent yield the corresponding mononuclear phosphine complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}(PPh3)] (3) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}(PPh3)] (4), respectively. The single-crystal X-ray structure analysis of 4 reveals the formation of a dimer through two C-H?Cl interactions in the solid state.  相似文献   

3.
The mixed-metal trinuclear cluster cations [H3Ru2(C6Me6)2Os(C6H6)(O)]+ (1), [H3Ru2(1,2,4,5-C6H2Me4)2Os(p-MeC6H4iPr)(O)]+ (2) and [H3Ru2(1,2,4,5-C6H2Me4)2Os(C6H6)(O)]+ (3) have been synthesised from the corresponding dinuclear precursors [H3Ru2(arene)2]+ and the corresponding mononuclear complexes [Os(arene)(H2O)3]2+, isolated and characterised as the tetrafluoroborate and hexafluorophosphate salts. The cations 1, 2 and 3 are heteronuclear analogues of the cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ that possesses a homonuclear metallic core. The single-crystal X-ray structure analyses of [1][BF4], [2][PF6] and [3][PF6] reveal an equiangular metal triangle despite the presence of an osmium atom in the metallic core.  相似文献   

4.
The reaction of [RuCl2(PPh3)3] and [OsBr2(PPh3)3] precursors with a series of heterocyclic bidentate (N, X) ligands, X = S, Se, gave complexes [M(R-pyS)2(PPh3)2], (R = H, 3-CF3, 5-CF3, 3-Me3Si); [M(R-pymS)2(PPh3)2], (R = 4-CF3, 4,6-MeCF3) and [M(R-pySe)2(PPh3)2], (R = H, 3-CF3, 5-CF3), where M is Ru or Os, pyS and pymS the anions of pyridine-2-thione and pyrimidine-2-thione, respectively, and pySe is the anion produced by the reductive cleavage of the Se-Se bond in the dipyridyl-2,2′-diselenide. All of the compounds obtained were characterized by microanalysis, IR, FAB, NMR spectroscopy and by cyclic voltammetry. Compounds [Ru(3-CF3-pyS)2(PPh3)2] · 2(CH2Cl2) (2), [Ru(3-Me3Si-pyS)2(PPh3)2] (4), [Ru(4-CF3-pymS)2(PPh3)2] (5), [Ru(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (8), [Os(3-CF3-pyS)2(PPh3)2] · (CHCl3) (11), [Os(3-Me3Si-pyS)2(PPh3)2] (13), [Os(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (17), [Os(5-CF3-pySe)2(PPh3)2] · 2(H2O) (18) and [OsCl2(4,6-MeCF3-pymS)(PPh3)2] (19) were also characterized by X-ray diffraction. In all cases, the metal is in a distorted octahedral environment with the heterocyclic ligand acting as a bidentate (N, S) chelate system.  相似文献   

5.
A number of osmium and ruthenium complexes of the tridentate ligands 2,2′:6′,2″-terpyridine (tpy) and 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tpp) have been prepared and characterized by our laboratory. All these complexes possess metal based oxidations and ligand based reductions localized on each polyazine ligand. Polymetallic complexes bridged by the tpp ligand exhibit two sequential tpp based reductions prior to the reduction of other polyazine ligands in these complexes. The spectroscopy of these complexes is dominated by ligand based π-π* transitions in the ultraviolet and MLCT (metal-to-ligand charge transfer) bands terminating on each polyzine ligand in the visible. For the complexes reported herein the lowest lying optical transitionis a M → BL CT band. For most of the complexes reported, occupation of this excited state gives rise to an observable emission at room temperature. For ruthenium complexes of these tridentate ligands, the presence of a low-lying LF state shortens the excited state lifetimes of these chromophores. This gives rise to ruthenium complexes that display shorter excited state lifetimes than the analogous osmium based systems. Incorporation of tpp based chromophores into polymetallic frameworks leads to the production of bimetallic species with long-lived excited states, 100 ns at room temperature. This makes these chromophores good candidates for the development of stereochemically defined supramolecular complexes. It is possible to measure an electrochemical HOMO-LUMO energy gap and a correlation between this electrochemically measured energy gap and the spectroscopic energy associated with this HOMO→LUMO transition are reported herein (HOMO== highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital).  相似文献   

6.
Rates and regioselectivity of arene exchange reactions in cationic fused arene Fe(II)Cp complexes were investigated. Thermal exchange of pyrene, naphthalenes, and cyclooctatetraene occurs in the temperature range of 90-140 °C. The most labile complex in the series studied is [(η6-(1-4,4a,8a)-1,4-dimethoxynaphthalene)FeCp][PF6] having the FeCp coordinated to the substituted ring. Pyrene and other naphthalene complexes come next, followed by the cyclooctatetraene complex. Phenanthrene, veratrol, and dihydronaphthalene do not undergo exchange at temperatures up to 130 °C. With Me- and OMe-substituted naphthalenes, exchange is reversible and favors the product having the metal coordinated to the non-substituted ring. The X-ray crystal structures of the two regioisomeric 1,4-dimethoxynaphthalene complexes were determined. Arene exchange in fused arene complexes is shown to be a useful synthetic method and provides new arene complexes cleanly and efficiently. The method is particularly attractive for arenes that contain functionalities that are not compatible with the Lewis acid-mediated routes. The starting materials are readily accessible via the TiCl4-assisted Cp exchange in ferrocene.  相似文献   

7.
Formation of the linear chain ruthenium and osmium carbonyls by successive linkage of mononuclear [M(CO)4Cl2] units and by opening trinuclear clusters [M3(CO)12] and [FeM2(CO)12] (M = Ru, Os) with chlorine gas have been studied by computational DFT methods. Energetically the formation of dinuclear [M2(CO)8Cl2] from [M(CO)4Cl2] units is the most demanding step. The following chain growth by adding new mononuclear units proceeds more easily with nearly constant energy per step. Cluster opening by chlorine gas to obtain trinuclear [M3(CO)12Cl2] is a facile reaction for both ruthenium and osmium clusters as well as for mixed metal clusters. Mixed metal clusters [FeOs2(CO)12] and [FeRu2(CO)12] open preferably between iron-osmium or iron-ruthenium bonds producing linear trinuclear Fe-M-M-type of compound. In the case of mixed metal Os-Ru clusters, the cleavage of Os-Ru bond is not clearly preferred. Fragmentation of the cluster to shorter units cis(Cl)-[M(CO)4Cl2] or [M2(CO)8Cl2] with equatorial chlorides is highly favorable and competes with the cluster opening. No preferences on the bond type (Os-Ru, Os-Os, or Ru-Ru) that are broken can be found in the case of mixed metal Os-Ru clusters.  相似文献   

8.
The antiproliferative properties of the osmium(II) complexes cis,fac-[Os(II)Cl(2)(DMSO)(3)(L)] and trans,cis,cis-[Os(II)Cl(2)(DMSO)(2)(L)(2)] (L = 1H-pyrazole, 1H-imidazole) were studied in three human cancer cell lines, namely 41M (ovary), SK-BR-3 (breast), and SW480 (colon). Their activities were compared with those of osmium(III) and ruthenium(III) NAMI-A type complexes on HT-29 (colon) and SK-BR-3 cancer cell lines. While IC(50) values of all the Os(II) complexes were found to be >1000 microM in all cell lines, Os and Ru-NAMI-A type complexes showed remarkable antiproliferative activity. The marginal in vitro cytotoxicity of the Os(II) compounds is presumably attributed to their resistance to hydrolysis. However, the Os-NAMI-A complexes, which are also kinetically stable in aqueous solution, showed reasonable antiproliferative activity in vitro when compared with the analogous Ru compounds and with the Os(II)-DMSO-azole species, indicating that hydrolysis might be not a prerequisite for the antitumor activity of Os-NAMI-A type complexes.  相似文献   

9.
Cationic ruthenium(II) pentamethylcyclopentadienyl benzenesulfonamide sandwich complexes have been synthesized and screened for enzymatic inhibition of the physiologically dominant carbonic anhydrase (CA) isozymes: human CA I and II, mitochondrial isozymes VA and VB, and the cancer-associated isozyme IX. The complexes demonstrated weaker binding to CAs compared with typical aromatic sulfonamides, inhibiting the enzyme at high nanomolar concentrations. An in vitro cytotoxic evaluation of the complexes was also undertaken against a range of tumorigenic cell lines and a healthy human cell line. Complexes inhibited the growth of cancerous cells at low micromolar concentrations while expressing lower levels of toxicity towards the normal human cell line. Factors influencing the synthesis, cytotoxicity, and enzyme affinity for this series of organometallic complexes are discussed.  相似文献   

10.
A series of water soluble complexes of general formula [(η6-arene)Ru{(C5H4N)2CNRi}Cl]PF6 have been prepared by the reaction of [{(η6-arene)RuCl2}2] with appropriate 2,2′-dipyridyl-N-alkylimine ligands (dpNRi) in the presence of NH4PF6 (where; R = Me or Et; arene = p-cymene, C6Me6, C6H6). The 2,2′-dipyridyl-N-alkylimine ligands are prepared by reaction of 2,2′-dipyridyl ketone with the corresponding alkylamine. The complexes are readily obtained as air stable yellow to dark brown solids by simple stirring at room temperature. The complexes are isolated as their hexafluorophosphate salts and characterized on the basis of spectroscopic data. The molecular structure of representative complex [(η6-C6Me6)Ru{(C5H4N)2CN-Me}Cl]PF6 has been determined by single crystal X-ray diffraction studies.  相似文献   

11.
We have used the elimination of AuX(PR3) (X = halide, R = Ph, tol) that occurs in reactions of alkynylgold(I)-phosphine complexes with M3(μ-H)33-CBr) (CO)9 (M = Ru, Os) to prepare the complexes M3(μ-H)33-CCCR)(CO)9 [M = Ru, R = Ph 2, CCSiMe33, Fc 4, CCFc 6-Ru, CC[Ru(PPh3)2Cp] 8; M = Os, R = CCFc 6-Os, CCCCFc 7], Fc′{(μ3-CCC)Ru3(μ-H)3(CO)9}25, and bis-cluster-capped carbon chain complexes {M3(μ-H)3(CO)9}233-C(CC)nC} (M = Ru, n = 2 9, 3 10-Ru; M = Os, n = 3 10-Os) and {(L)(OC)8(μ-H)3M3}C(CC)nC{Co3(μ-dppm)(CO)7} (n = 1, M = Ru, L = CO 11, PPh312-Ru/P; n = 2, L = CO 12-Ru, PPh313; M = Os, L = CO 12-Os) in good to excellent yields. X-ray structural determinations of 2-5, 6-Ru, 6-Os, 7, 9, 11, 12-Ru, 12-Os and 12-Ru/P are reported.  相似文献   

12.
Ruthenium(II) arene anticancer complexes [(η 6-arene)Ru(en)Cl]PF6 (arene is hexamethylbenzene, p-cymene, indan; en is ethylenediamine) can catalyse regioselective reduction of NAD+ by formate in water to form 1,4-NADH, at pD 7.2, 37 °C, and in the presence of air. The catalytic activity is markedly dependent on the arene, with the hexamethylbenzene (hmb) complex showing the highest activity. For [(η 6-hmb)Ru(en)Cl]PF6, the rate of reaction is independent of NAD+ concentration and shows saturation kinetics with respect to formate concentration. A K m value of 58 mM and a turnover frequency at saturation of 1.46 h−1 were observed. Removal of chloride and performing the reaction under argon led to higher reaction rates. Lung cancer cells (A549) were found to be remarkably tolerant to formate even at millimolar concentrations. The possibility of using ruthenium arene complexes coadministered with formate as catalytic drugs is discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
Mononuclear 5-(4-pyridyl)-10,15,20-triphenylporphyrin and 5-(3-pyridyl)-10,15,20-triphenylporphyrin as well as tetranuclear 5,10,15,20-tetra(4-pyridyl)porphyrin (tetra-4-pp) and 5,10,15,20-tetra(3-pyridyl)porphyrin) (tetra-3-pp) arene ruthenium(II) derivatives (arene is C6H5Me or p-Pr i C6H4Me) were prepared and evaluated as potential dual photosensitizers and chemotherapeutics in human Me300 melanoma cells. In the absence of light, all tetranuclear complexes were cytotoxic (IC50 ≤ 20 μM), while the mononuclear derivatives were not (IC50 ≥ 100 μM). Kinetic studies of tritiated thymidine and tritiated leucine incorporations in cells exposed to a low concentration (5 μM) of tetranuclear p-cymene derivatives demonstrated a rapid inhibition of DNA synthesis, while protein synthesis was inhibited only later, suggesting arene ruthenium–DNA interactions as the initial cytotoxic process. All complexes exhibited phototoxicities toward melanoma cells when exposed to laser light of 652 nm. At low concentration (5 μM), LD50 of the mononuclear derivatives was between 5 and 10 J/cm2, while for the tetranuclear derivatives LD50 was approximately 2.5 J/cm2 for the [Ru46-arene)4(tetra-4-pp)Cl8] complexes and less than 0.5 J/cm2 for the [Ru46-arene)4(tetra-3-pp)Cl8] complexes. Examination of cells under a fluorescence microscope revealed the [Ru46-arene)4(tetra-4-pp)Cl8] complexes as cytoplasmic aggregates, whereas the [Ru46-arene)4(tetra-3-pp)Cl8] complexes were homogenously dispersed in the cytoplasm. Thus, these complexes present a dual synergistic effect with good properties of both the arene ruthenium chemotherapeutics and the porphyrin photosensitizer.  相似文献   

14.
In this article we report some results obtained during 20 years of collaboration with the group of Prof. Balzani. The small review covers Ruthenium and some Osmium compounds, from cage to multinuclear complexes and molecular switches. The review does not intend to be comprehensive but it is only a general overview of the most important achievements in the field of photophysics and photochemistry of luminescent metal complexes.  相似文献   

15.
Substitution reaction of chloro η6-arene ruthenium N∩O-base complexes [(η6-arene)Ru(N∩O)Cl] [N∩O = pyrazine-2-carboxylic acid (pca-H), 8-hydroxyquinoline (hq-H); arene = p-iPrC6H4Me, N∩O = hq (1); arene = C6Me6, N∩O = hq (2)] with NaN3 yield the neutral arene ruthenium azido complexes of the general formula [(η6-arene)Ru(N∩O)N3] [N∩O = pca, arene = p-iPrC6H4Me (3), arene = C6Me6 (4); N∩O = hq, arene = p-iPrC6H4Me (5), arene = C6Me6 (6)]. These complexes undergo [3 + 2] dipolar cycloaddition reaction with activated alkynes dimethyl and diethyl acetylenedicarboxylates to yield the arene triazole complexes [(η6-arene)Ru(N∩O){N3C2(CO2R)2}] [N∩O = pca, R = Me, arene = p-iPrC6H4Me (7), C6Me6 (8); R = Et, arene = p-iPrC6H4Me (9), C6Me6 (10); N∩O = hq, R = Me, arene = p-iPrC6H4Me (11) C6Me6 (12); R = Et, arene = p-iPrC6H4Me (13), C6Me6 (14)]. On the bases of proton NMR study, in the above triazole complexes N(2) isomers are assigned with dimethylacetylenedicarboxylate whereas N(1) isomers with diethylacetylenedicarboxylate. All complexes have been characterized by IR and NMR spectroscopy as well as by elemental analysis. The molecular structures of the azido complexes [(η6-p-iPrC6H4Me)Ru(pca)N3] (3), [(η6-p-iPrC6H4Me)Ru(hq)N3] (5) and [(η6-C6Me6)Ru(hq)N3] (6) have been established by single crystal X-ray diffraction studies.  相似文献   

16.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

17.
The ferrocenyl-containing diruthenium complexes [Ru2(CO)422-OOCFc)2L2] (Fc = ferrocenyl, fc = ferrocen-1,1′-diyl; 1: L = NC5H4-COOC6H4-OC10H21, 2: L = NC5H4-COOC6H4-OC16H33, 3: L = NC5H4-OOC-fc-C12H25) and [Ru2(CO)422-OOC6H5)2(NC5H4-OOC-fc-C12H25)2] (4) have been synthesized from Ru3(CO)12, ferrocene carboxylic or benzoic acid and the corresponding pyridine derivative. The synthesis of the new pyridine derivative NC5H4-OOC-fc-C12H25 used for the preparation of 3 and 4 is also reported. Complexes 1-4 posses a so-called sawhorse structure consisting of the Ru2(CO)4 backbone and two bridging carboxylato ligands, while the coordination sphere around the ruthenium atoms is completed by the pyridine-derived ligands bonded in the axial positions. The electrochemical behavior of 1-4 and their known analogues [Ru2(CO)422-OOCFc)2L2] (5: L = NC5H5, 6: L = P(C6H5)3, 7: L = NC5H4-OOCFc) has been studied by voltammetry on rotating disc electrode and by cyclic voltammetry.  相似文献   

18.
1,2,4-Trimethyl-cyclohexadiene reacts with RuCl3 · nH2O in refluxing ethanol to afford quantitatively [RuCl2(1,2,4-C6H3Me3)]2 (1), the coordination of 1,2,4-trimethylbenzene to the ruthenium atom introducing planar chirality at the η6-arene ligand. The dinuclear complex 1 reacts with two equivalents of triphenylphosphine (PPh3) to give quantitatively, as a racemic mixture of enantiomers, [RuCl2(1,2,4-C6H3Me3)(PPh3)] (2), the structure of which has been determined by a single-crystal X-ray structure analysis of (rac)-2. Similarly, 1 reacts with two equivalents of the enantiopure phosphine (1S,2S,5R)-(+)-neomenthyldiphenylphosphine (nmdpp) to afford in good yield [RuCl2(1,2,4-C6H3Me3)(nmdpp)] (3) as a mixture of diastereoisomers, from which the isomer 3a was isolated by crystallisation. A single-crystal X-ray structure analysis of 3a allowed the determination of the absolute configuration at the planar chiral η6-arene moiety. Finally, complex 1 reacts with one equivalent of the diphosphine ligand 1,1-bis(diphenylphosphino)ferrocene (dppfc) to give the heteronuclear complex [RuCl2(1,2,4-C6H3Me3) (dppfc)RuCl2(1,2,4-C6H3Me3)] (4). All complexes were fully characterised by elemental analysis, mass spectrometry, NMR and IR spectroscopies.  相似文献   

19.
Treatment of [Bun4N][Ru(N)Cl4] with Na(OR) afforded [Bun4N][Ru(N)(OR)4] (R = C6F5 (1), C6F4H (2), C6Br5 (3)), whereas that with [Bun4N][Os(N)Cl4] gave [Bun4N][Os(N)(OR)3Cl] (R = C6F5 (4), C6F4H (5), C6Br5 (6)). Treatment of [Bun4N][M(N)Cl4] with Na(SC6F4H) and Na(Sxyl) (xyl = 2,6-dimethylphenyl) afforded [Bun4N][M(N)(SC6F4H)4] (M = Ru (7), Os (8)) and [Bun4N][M(N)(Sxyl)4] (M = Ru (9), Os (10)), respectively. The crystal structures of compounds 1, 6 and 9 have been determined.  相似文献   

20.
The cyclopentadienyl osmium(II) complexes [(η5-C5H5)Os(PPh3)2X] [X = Br (1), CH3CN (2)] reacts with sodium azide (NaN3) to yield the corresponding azido complex [(η5-C5H5)Os(PPh3)2N3] (3). This undergoes [3+2] dipolar cycloaddition reaction with activated alkynes like dimethyl and diethyl acetylenedicarboxylate to yield triazolato complexes [(η5-C5H5)Os(PPh3)2{N3C2(CO2R)2}] [R = –CH2CH3 (4) and –CH3 (5)]. The complex 3 also reacts with nitriles such as tetracyanoethylene (TCE), fumaronitrile and p-nitrobenzonitrile to yield complexes of the type [(η5-C5H5)Os(PPh3)2{N4C2(CN)C(CN)2}] (6), [(η5-C5H5)Os(PPh3)2{N3C2HCN}] (7) and [(η5-C5H5)Os(PPh3)2{N4C(C6H4p-NO2)}] (8). These complexes were fully characterized on the basis of microanalyses, FT-IR and NMR spectroscopic data. The molecular structure of the representative complex [(η5-C5H5)Os(PPh3)2{N3C2(CO2CH2CH3)2}] (4) was determined by single crystal X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号