首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The biolistic method was used to introduced DNA into cotyledons of Acacia mangium and A. mearnsii. The β-glucuronidase gene (gus) and the green fluorescent protein gene (gfp) were tested as reporter genes to study the effects of acceleration pressure and pre- and post-bombardment osmotic treatments. These consisted of incubating the explants in the presence of sucrose, mannitol, and sorbitol for several hours before or after bombardment with microprojectiles. High acceleration pressure slightly enhanced gus expression in both species tissues. Osmotic treatments significantly improved expression of both reporter genes introduced into A. mearnsii cotyledons. The best transient expression was observed in these tissues when they were treated with mannitol and sorbitol (0.3 or 0.4M each) for 3–4h before the bombardment and 3h afterwards. However, the same treatments did not affect the expression of the gus gene introduced in A. mangium explants.  相似文献   

2.
In this paper we compare five heterologous promoters fused to β-glucuronidase gene in their influence on localization of GUS activity in cauliflower (Brassica oleracea var. botrytis) tissues: roots, leaves, petioles and curds. A constitutive promoter CaMV 35S and four tissue specific promoters were used: extAP from rape, PsMTAP from pea, RBCS3CP from tomato and SRS1P from soybean, and introduced into cauliflower seedling explants using Agrobacterium rhizogenes mediated transformation. Quantitative and histochemical GUS assays confirmed tissue specific gus expression. It was found that extAP promoter was the most active in petioles but also caused a significant gus expression in curds. GUS activity was hardly observed in curd and restricted only to its epidermis when PsMTAP promoter drove the gene. RBCS3CP and SRS1P promoters controlled similar expression of the gus gene throughout the plant except for curd where RBCS3CP was almost inactive.  相似文献   

3.
A highly reproducible Agrobacterium-mediated transformation system was developed for the wetland monocot Juncus accuminatus. Three Agrobacterium tumefaciens binary plasmid vectors, LBA4404/pTOK233, EHA105/pCAMBIA1201, and EHA105/pCAMBIA1301 were used. All vectors contained the 35SCaMV promoter driven, intron containing, β-glucuronidase (gus), and hygromycin phosphotransferase (hptII) genes within their T-DNA. After 48 h of cocultivation, 21-d-old seedling derived calli were placed on medium containing timentin at 400 mg l−1, to eliminate the bacteria. Calli were selected on MS medium containing 40 or 80 mg l−1 hygromycin, for 3 mo. Resistant calli were regenerated and rooted on MS medium containing hygromycin, 5 mg l−1(22.2 μM) of 6-benzylamino-purine (BA) and 0.1 mg l−1(0.54 μM) of alpha-naphthaleneacetic acid (NAA), respectively. Seventy-one transgenic cell culture lines were obtained and 39 plant lines were established in the greenhouse. All the plants were fertile, phenotypically normal, and set viable seed. Both transient and stable expression of the gus gene were demonstrated by histochemical GUS assays of resistant calli, transgenic leaf, root, inflorescence, seeds, and whole plants. The integration of gus and hptII genes were confirmed by polymerase chain reaction (PCR) and Southern analysis of both F0 and F1 progenies. The integrated genes segregated to the subsequent generation in Mendelian pattern. To our knowledge, this is the first report of the generation of transgenic J. accuminatus plants.  相似文献   

4.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

5.
Tocopherols, with antioxidant properties, are synthesized by photosynthetic organisms and play important roles in human and animal nutrition. In soybean, γ-tocopherol, the biosynthetic precursor to α-tocopherol, is the predominant form found in the seed, whereas α-tocopherol is the most bioactive component. This suggests that the final step of the α-tocopherol biosynthetic pathway catalyzed by γ-tocopherol methyltransferase (γ-TMT) is limiting in soybean seed. Soybean oil is the major edible vegetable oil consumed, so manipulating the tocopherol biosynthetic pathway in soybean seed to convert tocopherols into more active α-tocopherol form could have significant health benefits. In order to increase the soybean seed α-tocopherol content, the γ-TMT gene isolated from Perilla frutescens was overexpressed in soybean using a seed-specific promoter. One transgenic plant was recovered and the progeny was analyzed for two generations. Our results demonstrated that the seed-specific expression of the P. frutescens γ-TMT gene resulted in a 10.4-fold increase in the α-tocopherol content and a 14.9-fold increase in the β-tocopherol content in T2 seed. Given the relative contributions of different tocopherols to vitamin E activity, the activity in T2 seed was calculated to be 4.8-fold higher than in wild-type seed. In addition, the data obtained on lipid peroxidation indicates that α-tocopherol may have a role in preventing oxidative damage to lipid components during seed storage and seed germination. The increase in the α-tocopherol content in the soybean seed could have a potential to significantly increase the dietary intake of vitamin E.  相似文献   

6.
7.
8.
The technologies allowing the production of transgenic plants without selectable marker genes, is of great interest in public and environmental safety. For generating such marker-free transgenic plants, possibility has been offered by Multi-Auto-Transformation [MAT] vector system, which combines positive selection, using the isopentenyl transferase (ipt) gene, with a site-specific recombination that generates marker-free plants. In this study Agrobacterium tumefaciens strain EHA105 harboring an ipt-type MAT vector, pMAT21, containing lacZ, gus genes and the removable cassette in the T-DNA region was used to produce marker-free transgenic Kalanchoe blossfeldiana Poelln., employing ipt gene as the selectable marker gene. Co-cultivated explants were cultured on hormone- and selective agent-free MS medium, and 85% of the regenerated shoots showed ipt-shooty phenotype with GUS expression. Forty-one morphologically normal shoots were produced during the subculture. More than ninety percent of the normal shoots were ipt , gus but lacZ + as determined by PCR analyses. These results indicate that the ipt phenotype was clearly distinguishable from non-transgenic as well as transgenic marker-free shoots. This study opens interesting perspective for the generation of marker-free transgenic K. blossfeldiana with objective useful transgene.  相似文献   

9.
The soybean aphid [Aphis glycines Matsumura] is an important pest of soybean [Glycine max (L.) Merr.] in North America. Single dominant genes in the cultivars ‘Dowling’ and ‘Jackson’ control resistance to the soybean aphid. The gene in Dowling was named Rag1, and the genetic relationship between Rag1 and the gene in Jackson is not known. The objectives of this study were to map the locations of Rag1 and the Jackson gene onto the soybean genetic map. Segregation of aphid resistance and simple sequence repeat (SSR) markers in F 2:3 populations developed from crosses between Dowling and the two susceptible soybean cultivars ‘Loda’ and ‘Williams 82’, and between Jackson and Loda, were analyzed. Both Rag1 and the Jackson gene segregated 1:2:1 in the F 2:3 populations and mapped to soybean linkage group M between the markers Satt435 and Satt463. Rag1 mapped 4.2 cM from Satt435 and 7.9 cM from Satt463. The Jackson gene mapped 2.1 cM from Satt435 and 8.2 cM from Satt463. Further tests to determine genetic allelism between Rag1 and the Jackson gene are in progress. The SSR markers flanking these resistance genes are being used in marker-assisted selection for aphid resistance in soybean breeding programs. Trade and manufacturers’ names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

10.
CHRISTOU  PAUL 《Annals of botany》1990,66(4):379-386
Transgenic soybean (Glycine max L.) plants derived from electricdischarge particle acceleration experiments exhibited varyingdegrees of chimerism which was followed by the expression ofthe introduced ß-glucuronidase (gus) gene. Degreesof chimerism in transgenic plants were established by determiningexpression of the gus gene observed as blue spots, streaks orsectors in stem and leaf tissues in in vitro grown plantletsand greenhouse plants. Clonal plants were also obtained. Presenceof the gene was confirmed by Southern blot analysis. These studiespermitted the reconstruction of a partial picture for the developmentof the soybean plant. Glycine max L. cv. Williams 82, soybean, transformation, ß-glucuronidase, chimeric plant phenotypes, development  相似文献   

11.
Marker-gene-free transgenic soybean plants were produced by isolating a developmentally regulated embryo-specific gene promoter, app1, from Arabidopsis and developing a self-activating gene excision system using the P1 bacteriophage Cre/loxP recombination system. To accomplish this, the Cre recombinase gene was placed under control of the app1 promoter and, together with a selectable marker gene (hygromycin phosphotransferase), were cloned between two loxP recombination sites. This entire sequence was then placed between a constitutive promoter and a coding region for either β-glucuronidase (Gus) or glyphosate acetyltransferase (Gat). Gene excision would remove the entire sequence between the two loxP sites and bring the coding region to the constitutive promoter for expression. Using this system marker gene excision occurred in over 30% of the stable transgenic events as indicated by the activation of the gus reporter gene or the gat gene in separate experiments. Transgenic plants with 1 or 2 copies of a functional excision-activated gat transgene and without any marker gene were obtained in T0 or T1 generation. This demonstrates the feasibility of using developmentally controlled promoters to mediate marker excision in soybean.  相似文献   

12.
We report a new and improved pPZP vector (pPZP3425) for efficient plant transformation. This vector is derived from the widely used pPZP100 series of binary Agrobacterium vectors. One disadvantage of these vectors is the use of chloramphenicol resistance for selection in Escherichia coli and Agrobacteria. We have therefore included a kanamycin resistance gene for selection in Agrobacterium. Furthermore, the strong 35S CaMV promoter driving the plant resistance gene has been replaced by the weaker nos promoter because it has been shown that the 35S promoter driving the plant resistance marker can lead to ectopic expression of the transgene. During replacement of the 35S promoter, the NcoI site within the plant resistance gene has been removed, and NcoI can now be used for cloning purposes within the expression cassette which consists of an intron-containing gus gene driven by a strong constitutive promoter (35S promoter with doubled enhancer plus omega-element as translational enhancer). Thus, a single vector can conveniently be used for two purposes: (1) for overexpression of proteins by replacing the gus gene by the coding sequence of choice and (2) for creation of promoter:gus fusions by substituting the constitutive promoter by any other promoter. We demonstrate the usefulness of this vector for cloning a promoter:gus fusion and in planta transformation of Arabidopsis.  相似文献   

13.
Jiang H  Shang L  Yoon SH  Lee SY  Yu Z 《Biotechnology letters》2006,28(16):1241-1246
Metabolically-engineered Escherichia coli strains were developed by cloning poly-γ-glutamic acid (γ-PGA) biosynthesis genes, consisting of pgsB, pgsC and pgsA, from Bacillus subtilis The metabolic and regulatory pathways of γ-PGA biosynthesis in E. coli were analyzed by DNA microarray. The inducible trc promoter and a constitutive promoter (PHCE) derived from the d-amino acid aminotransferase (D-AAT) gene of Geobacillus toebii were employed. The constitutive HCE promoter was more efficient than inducible trc promoter for the expression of γ-PGA biosynthesis genes. DNA microarray analysis showed that the expression levels of several NtrC family genes, glnA, glnK, glnG, yhdX, yhdY, yhdZ, amtB, nac, argT and cbl were up-regulated and sucA, B, C, D genes were down-regulated. When (NH4)2SO4 was added at 40 g/l into the feeding solution, the final γ-PGA concentration reached 3.7 g/l in the fed-batch culture of recombinant E. coli/pCOpgs.  相似文献   

14.
Imazapyr is a herbicidal molecule that concentrates in the apical meristematic region of the plant. Its mechanism of action is the inhibition of the enzymatic activity of acetohydroxyacid synthase, which catalyses the initial step in the biosynthesis of isoleucine, leucine and valine. The selectable marker gene, ahas, was previously isolated from Arabidopsis thaliana and contains a mutation at position 653 bp. Combining the use of imazapyr, the ahas gene and a multiple shooting induction protocol has allowed us to develop a novel system to select transgenic meristematic cells after the physical introduction of foreign genes. In this study, we describe a protocol to obtain a high frequency of fertile transgenic soybean plants that is variety-independent. Received: 14 June 1999 / Accepted: 8 October 1999  相似文献   

15.
Cho HJ  Farrand SK  Noel GR  Widholm JM 《Planta》2000,210(2):195-204
Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and β-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54–95% of the cotyledon explants on MXB selective medium containing 200 μg ml−1 kanamycin and 500 μg ml−1 carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4–5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode. Received: 13 July 1999 / Accepted: 8 August 1999  相似文献   

16.
Cotyledonary explants of two “Egusi” genotypes, ‘Ejagham’ and NHC1-130, were co-cultivated with Agrobacterium tumefaciens strain EHA101 carrying either plasmid pIG121-Hm harbouring genes coding for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII) or plasmid pBBRacdS harbouring these same genes along with a gene coding for 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Six weeks after co-cultivation, more than 35% of explants produced shoots in both cultivars. A DNA fragment corresponding to the gus gene or the selection marker nptII was amplified from genomic DNA extracted from leaves of regenerated plant clones rooted on hormone-free MS medium containing 100 mg/l kanamycin, suggesting their transgenic nature. Southern blot analysis confirmed successful integration of one to three copies of the gus gene. Transformation efficiencies of cultivar NHC1-130 with EHA101(pIG121-Hm) and EHA101(pIG121-Hm, pBBRacdS) were 3.8% and 10%, respectively, which were higher than those obtained for cultivar ‘Ejagham’ of 2.4% and 5.7%, respectively. Co-cultivation medium containing 5 mg/l BA was effective for obtaining high transformation efficiency for both cultivars as compared with that without it.  相似文献   

17.
As part of a gene tagging strategy to study the developmental regulation of patterns of plant gene expression, a promoterlessuidA (gus A) gene, encoding the -glucuronidase (GUS) reporter, was introduced into populations of tobacco,Arbidopsis and potato byAgrobacterium-mediated gene transfer. The objective was to generate random functional fusions following integration of thegusA gene downstream of native gene promoters. We describe here a detailed analysis of levels and patterns ofgusA activation in diverse organs and cell types in those populations.gusA activation occurred at high frequency in all three species, and unique patterns of fusion gene expression were found in each transgenic line. The frequency ofgusA activation was differentially blased in different organs in the three species. Fusion gene activity was identified in a wide range of cell types in all organs studied, and expression patterns were stably transmissible to the T2 and T3 progeny. Developmentally-regulated and environmentally-inducible expression ofgusA is described for one transgenic line. Phenotypic variants were detected in the transgenic population. These results demonstrate the potential of T-DNA insertion as a means of creating functional tags of genes expressed in a wide spectrum of cell types, and the value of the approach as a complement to standard T-DNA insertional mutagenesis and transposon tagging for developmental studies is discussed.  相似文献   

18.
The chlorinated insecticide γ-hexachlorocyclohexane (γ-HCH) is sequentially metabolized by the products of linA, linB, linC, linD, linE, and linF genes to β-ketoadipate, which is subsequently mineralized. Two or more copies of these genes are present in the bacterium Pseudomonas aeruginosa ITRC-5 that was isolated earlier by selective enrichment on technical-HCH. At least one copy of linA, linB, linC, linD, and possibly linE is lost from ITRC-5 upon its growth on γ-HCH. All the lin genes, however, are lost when the bacterium was grown in Luria–Bertani (LB) medium. The loss of lin genes is accompanied with the loss/rearrangement of insertion sequence IS6100 genes. Concomitant to the loss of lin genes, the degradation of HCH-isomers by “γ-HCH grown cells” is slower, when compared with “technical-HCH grown cells”, and is completely lost by “LB-grown cells”. The selective loss of lin genes during different growth conditions has not been reported before and is expected to help in understanding the dynamism of degradative genes.  相似文献   

19.
20.
A particle inflow gun was used to transfer the plasmid pAHC25 containing the bar gene conferring resistance to glufosinate and the gusA reporter gene, each driven by the maize ubiquitin promoter, to mature embryos of Pinus roxburghii (chir pine). High levels of transient expression were obtained when embryos were cultured for 6 days on 10 μM benzyl adenine-containing medium and then exposed to high osmoticum (0.5 M sucrose) before and after bombardment. Selection on medium containing Basta enabled recovery of stably transformed shoots, both from the epicotyl and from adventitious buds. The primary transformed shoots from the epicotyl were multiplied via axillary shoots. Transformation was confirmed by histochemical staining for β-glucuronidase (GUS) activity, by polymerase chain reaction (PCR) amplification of fragments of gusA and nos terminator, and by the resistance of needles to Basta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号