首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
I A Gamale?  A B Kaulin 《Tsitologiia》1987,29(12):1365-1371
It has been shown earlier that anisotropy of extrinsic fluorescence (AEF) of ordered structures in living cell may serve as a measure of the free structure energy. The experimental study of AEF changes of myelin at varying temperatures (0-30 degrees C) revealed cold denaturation. This phenomenon occurs only in cases when the structure in question is stabilized through hydrophobic interactions. The purpose of this work was to show that not only membranes but also some native ordered protein structures might be analysed by fluorescence polarization to detect hydrophobic interactions. The fluorescence anisotropy of primulin adsorbed by collagen fibrils from rat tail has been investigated. The fluorophore orientation decreases with temperature, i.e. here the phenomenon of cold denaturation is observed. When the medium humidity falls down to 80%, no cold denaturation occurs. AEF of collagen fibrils depends to a considerable extent on organic substances (ethanol, ethylene glycol) added in small concentrations to the incubation medium. It is concluded that the dependence of the whole collagen molecular structure in fibrils on the content and structure of the solvent shell is of critical nature.  相似文献   

4.
The formation of collagen fibrils from staggered repeats of individual molecules has become "accepted" wisdom. However, for over thirty years now, such a model has failed to resolve several structural and functional questions. In a novel approach, it was found, using atomic force microscopy, that tendon collagen fibrils are composed of subcomponents in a spiral disposition-that is, their structure is similar to that of macroscale ropes. Consequently, this arrangement was modeled and confirmed using elastic rod theory. This work provides new insight into collagen fibril structure and will have wide application-from the design of scaffolds for tissue engineering and a better understanding of pathogenesis of diseases of bone and tendon, to the conservation of irreplaceable parchment-based museum exhibits.  相似文献   

5.
Choroid plexus and intestinal microvilli in thin sections have microfilaments in the cytoplasm adjacent to the membranes, and in replicas have broken strands of filaments in both cytoplasm and on E faces of plasm membranes. The microfilaments contain actin as indicated by their binding of heavy meromyosin (HMM). In sections of choroid plexus, the microfilaments are 7-8 nm in diameter and form a loose meshwork which lies parallel to the membrane and which is connected to the membranes both by short, connecting filaments (8 times 30 nm) and dense globules (approximately 15-20 nm). The filamentous strands seen in replicas are approximately 8 nm in diameter. Because they are similar in diameter and are connected to the membrane, these filamentous strands seen in replicas apparently represent the connecting structures, portions of the microfilaments, or both. The filamentous strands attached to the membrane are usually associated with the E face and appear to be pulled through the P half-membrane. In replicas of intestinal brush border microvilli, the connecting strands attaching core microfilaments to the membrane are readily visualized. In contrast, regions of attachment of core microfilaments to dense material at the tips of microvilli are associated with few particles on P faces and with few filamentous strands on the E faces of the membranes. Freeze-fracture replicas suggest a morphologically similar type of connecting strand attachment for microfilament-membrane binding in both choroid plexus and intestinal microvilli, despite the lack of a prominent core bundle of microfilaments in choroid plexus microvilli.  相似文献   

6.
Comparison of the fine structural features of guinea pig adrenocortical cells as seen in thin sections with those revealed by freeze-fracture confirms the structural appearance of steroid-secreting cells as interpreted from thin sections and reveals significant new features of the membranous organelles. Smooth-surfaced endoplasmic reticulum appears as a network of tubules, interwoven or in parallel, and as cisternae, fenestrated and non-fenestrated. These elements are tightly packed in the deeper cortical cells, excluding other organelles from their domain. Tubules and fenestrated cisternae possess randomly distributed intramembranous particles on their PF faces, while closely packed non-fenestrated cisternae possess aggregates of particles interspersed with aparticulate regions on their PF faces. These differences in particle distribution suggest functional specialization among the various forms of reticulum. Mitochondria appear as elongated structures of varying shape. Freeze-fracture reveals that all their cristae have circular origins from the inner membrane. Sinuous tubules, which appear as tubules in section, and straight tubules, which appear as lamellae in section, arise from single sites. Flattened sac-like cristae may have multiple circular origins. Definite contact points seen between inner and outer membranes may facilitate passage of molecules, including steroids, into the mitochondrial compartments. Lysosomes and peroxisomes, which are easily identified in thin sections with the aid of cytochemistry, are difficult to identify with certainty by freeze-fracture. Single membrane-bound granules of slightly smaller diameter than mitochondria may represent lysosomes. Smaller granules interconnected with the tubular reticulum, as well as dilated regions of this organelle, may represent peroxisomes. Plasma membranes show no indication of tight junctions but do have abundant gap junctions which show a zonal differentiation: small gap junctions throughout the cortex, medium-sized regularly shaped gap junctions in zona fasciculata externa, and large irregular gap junctions in zona fasciculata interna and zona reticularis. The large junctions cover planar areas as well as surfaces of projections of one cell into another. Such junctions may allow passage of ions as well as of low-molecular-weight substances between the cells, facilitating or even amplifying the response to trophic hormone stimulation.  相似文献   

7.
8.
The structural and functional diversity of extracellular matrices is determined, not only by individual macromolecules, but even more decisively, by the alloyed aggregates they form. Although quantitatively major matrix molecules can occur ubiquitously, their organization varies from one tissue to another due to their amalgamation with specific sets of minor components. Here, we show that the fibril-associated collagen with interrupted triple helices collagen XVI is unique in that, depending on the tissue context, it can be incorporated into distinct suprastructural aggregates. In papillary dermis, the protein unexpectedly does not occur in banded collagen fibrils, but rather, is a component of specialized fibrillin-1-containing microfibrils. In territorial cartilage matrix, however, collagen XVI is not a component of aggregates containing fibrillin-1. Instead, the protein resides in a discrete population of thin, weakly banded collagen fibrils also containing collagens II and XI. Collagen IX also occurs in this population of fibrils, but at longitudinal locations discrete from those of collagen XVI. This suprastructural versatility of a collagen is without precedent and highlights pivotal differences in the tissue-specific organization of matrix aggregate structures.  相似文献   

9.
10.
Wharton's jelly of human umbilical cord is known to contain hyaluronic acid and sulphated glycosaminoglycans (probably as proteoglycans) immobilized in an insoluble collagen fibril network. A secondary, independent, insoluble network based on glycoprotein microfibrils of 13 nm diameter and interpenetrated with the collagen network has now been found in amounts corresponding to 9% of the weight of collagen. Elastin, however, is absent. Tissue slices placed in physiological buffer swell to two-fold their in vivo volume. This is due to the influence of the polysaccharides since treatment with either testicular hyaluronidase, Streptomyces hyaluronidase or chondroitinase ABC, causes their quantitative removal and abolishes the swelling tendency of tissue. Tissue so treated remains close to its in vivo volume indicating that for this state the fibrillar network, overall, is in its relaxed unstressed configuration. Subsequent treatment with a protease causes the degradation of the glycoprotein microfibril network and a two-fold increase in tissue volume while treatment with bacterial collagenase, resulting in the solubilization of 46% of the collagen, causes only a slight deswelling. These results suggest that the unstressed configuration of the network system at the in vivo volume of tissue is due to the collagen network being held in compression by the microfibril network. With intact tissue protease digestion with trypsin, in addition, causes a preferential release of sulphated glycosaminoglycans. Hyaluronic acid, however, remains largely immobilized.  相似文献   

11.
Summary In fibres of wood, the classical S1 and S2 layers are connectedvia a transition zone where a helicoidal texture occurs. In order to understand the actual mechanism of cellulose microfibril rotation in this zone, the study of relationship between cellulose and matrix was undertaken cytochemically at the ultrastructural level.Glucuronoxylans,i.e., the main hemicellulose component of hardwood, were studied in cell walls of linden tree. Xylanase-gold complexes were used as a new cytochemical tool to directly and specifically label glucuronoxylans within the wall of fibres. Subtractive localization (KOH or DMSO extraction and PATAg test or shadowing) associated with chemical analysis was carried out as control. The study of isolated glucuronoxylan molecules was undertaken in parallel.Both from direct (xylanase-gold labeling) and indirect techniques (extractions), glucuronoxylans appear preferentially concentrated in the transition zone which overlaps the layers S1 and S2. A comparison between KOH and DMSO extraction indicates a difference in accessibility of glucuronoxylans distributed across the whole wall and those located in the transition zone. Isolated molecules have a rodlike aspect and show a tendancy to spatially organize in parallel alignment. Cytochemical labeling of the isolated molecules concerns covalent linkages, vic-glycol groups and acid side groups along the main chain.The preferential localization indicates that in the helicoidal zone glucuronoxylans constitute a thick matrix embedding the cellulose microfibrils in the course of rotation. This data leads to a discussion of how these localized matrix molecules could intervene in the assembly and the twisted morphogenesis of the fibre cell wall.  相似文献   

12.
13.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   

14.
15.
Intercellular junction formation in preimplantation mouse embryos was investigated with thin-section and freeze-fracture electron microscopy. At the four-cell stage, regions of close membrane apposition with focal points of membrane contact and occasional underlying cytoplasmic densities were observed between blastomeres of thin-sectioned embryos. Corresponding intramembrane specializations were not, however, observed in freeze-fractured embryos. At the 8- to 16-cell stage, small gap and macula occludens junctions and complexes of these junctions were observed at all levels between blastomeres of freeze-fractured embryos. As development progressed from the early to mid 8- to 16-cell stage, the size of the occludens/gap junction complexes increased, forming fascia occludens/gap junction complexes. At the morula stage, gap junctions and occludens/gap junction complexes were observed on both presumptive trophoblast and inner cell-mass cells. Zonula occludens junctions were first observed at the morula stage on presumptive trophoblast cells of freeze-fractured embryos. The number of embryos possessing zonula occludens junctions increased at the mid compared to the early morula stage. At the blastocyst stage, junctional complexes consisting of zonula occludens, macula adherens, and gap junctions were observed between trophoblast cells of freeze-fractured and thin-sectioned embryos. Isolated gap and occludens junctions, adherens junctions, and occludens/gap junction complexes were observed on trophoblast and inner cell-mass cells.  相似文献   

16.
Summary The ultrastructure of the collagen of rat tail tendon was investigated by the freeze-fracture technique. Collagen fibers were pretreated with the digestive enzymes, -amylase, elastase and collagenase to remove matrix substances. Some of the samples were etched for 20 min. Fibrils had an average diameter of 318±12 nm and a banded structure with a mean periodicity of 64.2±0.9 mm; the banding was most marked in -amylase/elastase-treated specimens, although the periodicity was independent of pretreatment. Microfibrils were well-displayed following -amylase/elastase and collagenase pretreatments. A difference in the diameters of microfibrils was, however, observed between etched specimens (8.3±0.3 nm) and those prepared by other experimental methods (11.4±0.5 nm). In replicas of collagenase-treated and etched specimens, the interconnecting filaments in the interfibrillar region formed a network that was continuous with the microfibrils of collagen fibrils. The diameter of the interconnecting filaments was the same as that of microfibrils. Microfibrillar bundles were observed in the interfibrillar region.  相似文献   

17.
D A Parry  A S Craig 《Biopolymers》1978,17(4):843-845
Earlier studies by the authors showed that the collagen fibrils in rat-tail tendon have a bi-modal distribution of fibril diameters from a time shortly after birth through to the onset of maturity at about 3–4 months. Present work has extended those observations for rats up to the age of 2 years. Histograms of the fibril diameter distributions for mature tail tendon and direct electron microscope observations show that the fibrils break down as the tendon ages. Further work on the constant diameter subfibrils of diameter 140 Å described previously, has confirmed that these are part of the elastic fibers present in tendon at all ages. It has been shown that there is relatively little variation in the collagen fibril diameter distribution as a function of the position of the specimen in the tail, and as the measured percentage of the area taken by the collagen fibrils present at any particular point. Estimation of the fibrillar collagen content of rat-tail tendon as a function of age indicates that it increases steadily from birth and reaches a maximum at the onset of maturity, beyond which the fibrillar collagen content appears to remain constant.  相似文献   

18.
In termites and roaches the well-defined rectal papillae each comprise a layer of columnar principal cells specialized for active transport and a layer of basal cells. The whole cell group is entirely surrounded by several series of flattened 'sheath cells' (formerly termed 'junctional cells') which abut onto the basal components of the papilla. The sheath cells secrete a specialized sclerified cuticle which forms the framework of the papilla. Their regularly pleated apical membrane is closely apposed to the cuticle and contains parallel and closely spaced rows of intramembranous particles. at this level, no subcuticular space is present and hence the space associated with the apical surface of the principal cells is defined as an isolated compartment. Typical septate junctions are present between the sheath and basal cells; however those linking adjacent sheath cells are structurally unusual: they extend to the basal surface rather than being restricted to the apical zone, are frequently interrupted and in replicas are represented by relatively short and irregularly oriented particle rows. Moreover, lateral sheath cell contacts display two further peculiarities: absence of an apical desmosomal ring and paucity of gap junctions. Structural observations suggest that the sheath cells isolate the principal cells from communication with the hemolymph, consequently enhancing their efficiency in water and ionic regulation. Comparable cells have been described in a number of insects, but the 'isolation' system presents varying degrees of complexity, for which an evolutionary scheme is proposed.  相似文献   

19.
Fibrils of embryonic cartilage are heterotypic alloys formed by collagens II, IX, and XI and have a uniform diameter of approximately 20 nm. The molecular basis of this lateral growth control is poorly understood. Collagen II subjected to fibril formation in vitro produced short and tapered tactoids with strong D-periodic banding. The maximal width of these tactoids varied over a broad range. By contrast, authentic mixtures of collagens II, IX, and XI yielded long and weakly banded fibrils, which, strikingly, had a uniform width of about 20 nm. The same was true for mixtures of collagens II and XI lacking collagen IX as long as the molar excess of collagen II was less than 8-fold. At higher ratios, the proteins assembled into tactoids coexisting with cartilage-like fibrils. Therefore, diameter control is an inherent property of appropriate mixtures of collagens II and XI. Collagen IX is not essential for this feature but strongly increases the efficiency of fibril formation. Therefore, this protein may be an important stabilizing factor of cartilage fibrils.  相似文献   

20.
R. S. Pearce 《Planta》1985,166(1):1-14
Seedlings of Triticum aestivum L. cv. Neepawa were slowly drought-stressed by witholding water after sowing in pots. Leaf extension stopped during development of the third leaf. Damage was assessed by rewatering the pots and measuring regrowth; 1–5 d after growth stopped, rewatering induced significant regrowth within several hours; 6–13 d after growth stopped, regrowth was delayed; from 14 d after growth stopped, no regrowth occurred after rewatering. Leaf bases were excised from the drought-stressed seedlings during this period of increasing damage, and were freeze-etched.Intramembranous particles (IMP) were evenly scattered in the plasma membrane in those plants which regrew immediately after rewatering. In the plants which regrew after a delay or which did not regrow on rewatering, there were patches without IMP in plasma membrane, nuclear envelope, and other membranes. Plasma membrane, nuclear envelope and possibly other membranes were sometimes partly replaced by vesicles, possibly formed from the original membrane. Such vesiculation occurred in a few cells in plants which survived the stress with a delayed regrowth, and was commoner in the plants which did not recover. The results support the idea that slow drought induces IMP-free patches in membranes including the plasma membrane, this induces membrane reorganisation including vesiculation of membranes and coagulation of protoplasm, and that these are expressed as delayed or failed regrowth. Some IMP-free patches in the plasma membrane had a faint ordered sub-structure, possibly a hexagonal lipid phase. Such patches were infrequent and IMP sometimes occurred in areas of plasma membrane having an apparently similar sub-structure. Thus the IMP-free patches could not be explained by a lamellar-hexagonal phase transition. As the stress became damaging, vesicles and endoplasmic reticulum accumulated immediately next to the plasma membrane. Mainly during the early period of damaging stress (6–10 d after growth stopped), depressions, invaginations, and rarer lesions occurred in the plasma membrane, sometimes associated with some of the IMP-free patches. In the same period, many nuclear envelopes had exceptionally large nuclear pores.Abbreviations E exoplasmic - IMP intramembranous particles - P protoplasmic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号