首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

2.
In the embryos of glossiphoniid leeches, as in many annelids, cytoplasmic reorganization prior to first cleavage generates domains of yolk-deficient cytoplasm (called teloplasm) that are sequestered during the first three cell divisions to the D' macromere. Subsequently, the D' macromere generates a set of embryonic stem cells (teloblasts) that are the progenitors of the definitive segmental tissues. The hypothesis that fate-determining substances are localized within the teloplasm and segregated to the D macromere during cleavage is supported by experiments in which a redistribution of yolk-defcient cytoplasm changes the fate of blastomeres that inherit it (Astrow et al. 1987; Devries 1973; Nelson and Weisblat 1992). As a step toward identifying fate-determining factors in teloplasm, we describe the distribution of polyadenylated RNAs (polyA+ RNA) in the early embryo of the leech, Helobdella triserialis, as inferred from in situ hybridization using tritiated polyuridylic acid (3H-polyU). Our results indicate that polyA+ RNA colocalizes with teloplasm during cytoplasmic rearrangements resulting in teloplasm formation, and that it remains concentrated in the teloplasm during the cell divisions and a second cytoplasmic rearrangement during early embryogenesis. Lesser amounts of polyA+ RNA appear to be localized in cortical cytoplasm at most stages.  相似文献   

3.
4.
5.
Diplopods (millipedes) are known for their irregular body segmentation. Most importantly, the number of dorsal segmental cuticular plates (tergites) does not match the number of ventral structures (e.g., sternites). Controversial theories exist to explain the origin of this so-called diplosegmentation. We have studied the embryology of a representative diplopod, Glomeris marginata, and have analyzed the segmentation genes engrailed (en), hedgehog (hh), cubitus-interruptus (ci), and wingless (wg). We show that dorsal segments can be distinguished from ventral segments. They differ not only in number and developmental history, but also in gene expression patterns. engrailed, hedgehog, and cubitus-interruptus are expressed in both ventral and dorsal segments, but at different intrasegmental locations, whereas wingless is expressed only in the ventral segments, but not in the dorsal segments. Ventrally, the patterns are similar to what has been described from Drosophila and other arthropods, consistent with a conserved role of these genes in establishing parasegment boundaries. On the dorsal side, however, the gene expression patterns are different and inconsistent with a role in boundary formation between segments, but they suggest that these genes might function to establish the tergite borders. Our data suggest a profound and rather complete decoupling of dorsal and ventral segmentation leading to the dorsoventral discrepancies in the number of segmental elements. Based on gene expression, we propose a model that may resolve the hitherto controversial issue of the correlation between dorsal tergites and ventral leg pairs in basal diplopods (e.g., Glomeris) and is suggestive also for derived, ring-forming diplopods (e.g., Juliformia).  相似文献   

6.
7.
Jeon S  Kim J 《FEBS letters》2010,584(22):4593-4598
The RNA helicase Rok1 plays a role in rRNA processing and in control of cell cycle progression in Saccharomyces cerevisiae. We identified two upstream open reading frames (uORFs) within the ROK1 5′ untranslated region, which inhibited Rok1 translation. Mutating uATG to uAAG or generation of a premature stop codon in the uORFs resulted in increased Rok1p levels. Rok1 protein levels oscillated during the cell cycle, declining at G1/S and increasing at G2. The uAAG1 mutation caused a constitutive level of Rok1 proteins throughout the cell cycle, resulting in significant delays in mitotic bud emergence and recovery from pheromone arrest. Our study reveals that the Rok1 protein level is regulated by uORFs, which is critical in cell cycle progression.  相似文献   

8.
9.
Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods.  相似文献   

10.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

11.
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage.  相似文献   

12.
The cricket Gryllus bimaculatus is a typical hemimetabolous intermediate germ insect, in which the processes of segmentation and appendage formation differ from those in Drosophila, a holometabolous long germ insect. In order to compare their developmental mechanisms, we have focused on Gryllus orthologs of the Drosophila developmental regulatory genes and studied their functions. Here, we report a functional analysis of the Gryllus ortholog of extradenticle (Gbexd) using embryonic and parental RNA interference (RNAi) techniques. We found the following: (1) RNAi suppression of Gb′exd results in the deletion or fusion of body segments. Especially the head was often very severely affected. This gap-like phenotype may be related to reduced expression of the gap genes hunchback and Krüppel in early RNAi germbands. (2) In the appendages, several segments (podomeres) were fused. (3) Head appendages including the antenna were transformed to a leg-like structure consisting of at least one proximal podomere as well as several tarsomeres. The defects in appendages are reminiscent of the phenotype caused by large exd clones in Drosophila antennal discs. These findings led us to the conclusion that (1) Gb′exd is required for segment patterning in the gnathal to abdominal region, acting in a gap gene-like manner in the anterior region. (2) Gb′exd plays important roles in formation of the appendages and the determination of their identities, acting as a regulatory switch that chooses between the fates of head appendages versus the appendage ground state. Although functions of Gb′exd in appendage patterning appear fundamentally conserved between Gryllus and Drosophila, its role in body segmentation may differ from that of Drosophila exd.  相似文献   

13.
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.  相似文献   

14.
The Nieuwkoop center is the earliest signaling center during dorsal-ventral pattern formation in amphibian embryos and has been implied to function in induction of the Spemann-Mangold organizer. In zebrafish, Nieuwkoop-center-like activity resides in the dorsal yolk syncytial layer (YSL) at the interface of the vegetal yolk cell and the blastoderm. hex homologs are expressed in the anterior endomesoderm in frogs (Xhex), the anterior visceral endoderm in mice, and the dorsal YSL in zebrafish (hhex). Here, we investigate the control of hhex expression in the YSL. We demonstrate that bozozok (boz) is absolutely required for early hhex expression, while overexpression of boz causes ectopic hhex expression. Activation of Wnt/beta-catenin signaling by LiCl induces hhex expression in wild-type YSL but not in boz mutant embryos, revealing that boz activity is required downstream of Wnt/beta-catenin signaling for hhex expression. Further, we show that the boz-mediated induction of hhex is independent of the Boz-mediated repression of bmp2b. Our data reveal that repressive effects of both Vega1 and Vega2 may be responsible for the exclusion of hhex expression from the ventral and lateral parts of the YSL. In summary, zebrafish hhex appears to be activated by Wnt/beta-catenin in the dorsal YSL, where Boz acts in a permissive way to limit repression of hhex by Vega1 and Vega2.  相似文献   

15.
Sonic hedgehog expression during early tooth development in Suncus murinus   总被引:1,自引:0,他引:1  
Tooth development is a highly organized process characterized by reciprocal interactions between epithelium and mesenchyme. However, the expression patterns and functions of molecules involved in mouse tooth development are unclear from the viewpoint of explaining human dental malformations and anomalies. Here, we show the expression of sonic hedgehog (Shh), a potent initiator of morphogenesis, during the early stages of tooth development in Suncus murinus. Initially, symmetrical, elongated expression of suncus Shh (sShh) was observed in the thin layer of dental epithelial cells along the mesial-distal axis of both jaws. As the dental epithelium continued to develop, sShh was strictly restricted to the predicted leading parts of the growing, invaginating epithelium corresponding to tooth primordia and enamel knots. We propose that some aspects of Shh function in tooth development are widely conserved in mammalian phylogeny.  相似文献   

16.
In the newly fertilized Caenorhabditis elegans zygote, cytoplasmic determinants become localized asymmetrically along the anterior-posterior (A-P) axis of the embryo. The mitotic apparatus then orients so as to cleave the embryo into anterior and posterior blastomeres that differ in both size and developmental potential. Here we describe a role for MBK-2, a member of the Dyrk family of protein kinases, in asymmetric cell division in C. elegans. In mbk-2 mutants, the initial mitotic spindle is misplaced and cytoplasmic factors, including the germline-specific protein PIE-1, are mislocalized. Our findings support a model in which MBK-2 down-regulates the katanin-related protein MEI-1 to control spindle positioning and acts through distinct, as yet unknown factors, to control the localization of cytoplasmic determinants. These findings in conjunction with work from Schizosaccharomyces pombe indicate a possible conserved role for Dyrk family kinases in the regulation of spindle placement during cell division.  相似文献   

17.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

18.
Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号