首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide the first evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.  相似文献   

2.
Immunoblots probed with an antibody to M33 protein, a homolog of Drosophila Polycomb, revealed that most M33 in adult mouse liver had a higher electrophoretic mobility than that in F9 embryonal carcinoma cells. High-mobility 60-kDa M33 localized in the cytoplasmic fraction of liver homogenates, and two less abundant 66- and 70-kDa species were detected in the nuclear fraction. Immunocytochemistry of freeze-substituted tissues showed a punctate pattern of immunofluorescence in the cytoplasm of hepatic parenchymal cells. Nuclear M33 isoforms treated with alkaline phosphatase had increased mobilities corresponding to cytoplasmic M33. In partially hepatectomized mice, nuclear M33 isoforms appeared after 48 h, near the time of maximum DNA synthesis as measured by bromodeoxyuridine incorporation. By 60 h, most M33 was in the form of these low-mobility species, and the pattern of immunofluorescence suggested the existence of chromatin-bound and free states of the protein in the nucleus. Thereafter, high-mobility 60-kDa M33 reappeared. The data are consistent with a phosphorylation-associated translocation mechanism that is a cell cycle-dependent.  相似文献   

3.
4.
5.
Chen QQ  Chen XY  Jiang YY  Liu J 《Cell research》2005,15(7):504-510
ErbB2, a member of the receptor tyrosine kinase family, is frequently over-expressed in breast cancer. Proteolysis of the extracellular domain of ErbB2 results in constitutive activation of ErbB2 kinase. Recent study reported that ErbB2 is found in the nucleus. Here, we showed that ErbB2 is imported into the nucleus through a nuclear localization signal(NLS)-mediated mechanism. The NLS sequence KRRQQKIRKYTMRR (aa655-668) contains three clusters of basic amino acids and it is sufficient to target GFP into the nucleus. However, mutation in any basic amino acid cluster of this NLS sequence significantly affects its nuclear localization. Furthermore, it was found that this NLS is essential for the nuclear localization of ErbB2 since the intracellular domain of Erb2 lacking NLS completely abrogates its nuclear translocation. Taken together, our study identified a novel nuclear localization signal and reveals a novel mechanism underlying ErbB2 nuclear trafficking and localization.  相似文献   

6.
DNA demethylation is associated with gene activation and is mediated by a family of ten-eleven translocation (TET) dioxygenase. The TET3 protein is a 1668-amino-acid DNA demethylase that is predicted to possess five nuclear localization signals (NLSs). In this paper, we used a series of green fluorescent protein-tagged and mutation constructs to identify a conserved NLS (KKRK) embedded between amino acid 1615 and 1618 of mouse TET3. The KKRK sequence facilitates the cytoplasmic protein’s translocation into the nucleus. Additionally TET3 may be imported into the nucleus by importin-α and importin-β.  相似文献   

7.
Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-beta-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-beta-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric beta-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importinbeta binding site fused to VP22 blocks nuclear import of rpS2-beta-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importinalpha/beta and transportin.  相似文献   

8.
9.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

10.
11.
A nuclear localization signal binding protein in the nucleolus   总被引:20,自引:11,他引:9       下载免费PDF全文
《The Journal of cell biology》1990,111(6):2235-2245
We used functional wild-type and mutant synthetic nuclear localization signal peptides of SV-40 T antigen cross-linked to human serum albumin (peptide conjugates) to assay their binding to proteins of rat liver nuclei on Western blots. Proteins of 140 and 55 kD (p140 and p55) were exclusively recognized by wild-type peptide conjugates. Free wild-type peptides competed for the wild-type peptide conjugate binding to p140 and p55 whereas free mutant peptides, which differed by a single amino acid from the wild type, competed less efficiently. The two proteins were extractable from nuclei by either low or high ionic strength buffers. We purified p140 and raised polyclonal antibodies in chicken against the protein excised from polyacrylamide gels. The anti-p140 antibodies were monospecific as judged by their reactivity with a single nuclear protein band of 140 kD on Western blots of subcellular fractions of whole cells. Indirect immunofluorescence microscopy on fixed and permeabilized Buffalo rat liver (BRL) cells with anti-p140 antibodies exhibited a distinct punctate nucleolar staining. Rhodamine- labeled wild-type peptide conjugates also bound to nucleoli in a similar pattern on fixed and permeabilized BRL cells. Based on biochemical characterization, p140 is a novel nucleolar protein. It is possible that p140 shuttles between the nucleolus and the cytoplasm and functions as a nuclear import carrier.  相似文献   

12.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

13.
The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis.  相似文献   

14.
The murine Periaxin gene encodes two PDZ-domain proteins in myelin-forming Schwann cells of the vertebrate peripheral nervous system (Dytrych, L., Sherman, D. L., Gillespie, C. S., and Brophy, P. J. (1998) J. Biol. Chem. 273, 5794-5800). Here we show that L-periaxin is targeted to the nucleus of embryonic Schwann cells. Subsequently, the protein redistributes to the plasma membrane processes of the myelinating Schwann cell where it is believed to function in a signaling complex. In contrast, L-periaxin remains in the nucleus when expressed ectopically in oligodendrocytes, the myelin-forming glia of the central nervous system. The nuclear localization signal (NLS) is basic and tripartite and comprises three signals that act synergistically. Nuclear targeting of L-periaxin is energy-dependent and is inhibited by cell-cell contact. These data show that L-periaxin is a member of a growing family of proteins that can shuttle between the nucleus and cortical signaling/adherence complexes.  相似文献   

15.

Background  

Rybp (Ring1 and YY1 binding protein) is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of Rybp in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for Rybp in ocular development using four in vivo mouse models which resulted in either the ablation or overexpression of Rybp.  相似文献   

16.
17.
《The Journal of cell biology》1989,109(6):2623-2632
Through a series of label transfer experiments, we have identified a HeLa cell nuclear protein that interacts with nuclear localization signals (NLSs). The protein has a molecular weight of 66,000 and an isoelectric point of approximately 6. It associates with a synthetic peptide that contains the SV-40 T antigen NLS peptide but not with an analogous peptide in which an asparagine is substituted for an essential lysine (un-NLS peptide). In addition to these peptides, several proteins have been tested as label donors. With the proteins, there is a correlation between nuclear localization (assayed with lysolecithin-permeabilized cells) and label transfer to the 66-kD protein. The NLS peptide (but not the un-NLS peptide) competes with the proteins in label transfer experiments, but neither wheat germ agglutinin nor ATP has an effect. These results suggest that the 66-kD protein functions as an NLS receptor in the first step of nuclear localization. In the course of this work, we have observed that the Staphylococcus aureus protein A is a strongly karyophilic protein. Its dramatic nuclear localization properties suggest that it may have multiple copies of an NLS.  相似文献   

18.
Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.  相似文献   

19.
Simian virus 40 T antigen is specifically targeted to the nucleus by the signal Pro-Lys-Lys-128-Lys-Arg-Lys-Val. We have previously described the isolation of a simian virus 40 T-antigen mutant, 676FS, which retains a wild-type nuclear localization signal but fails to accumulate properly in the nucleus and interferes with the nuclear localization of heterologous proteins. Here we report that the hydrophobic carboxy-terminal sequence novel to 676FS T antigen overrides the nuclear localization signal if fused to other proteins, thereby anchoring the proteins in the cytoplasm. We discuss possible mechanisms by which missorting of such a fusion protein could interfere with the nuclear transport of heterologous proteins.  相似文献   

20.
The activation of the pleomorphic adenoma gene 1 (PLAG1) is the most frequent gain-of-function mutation found in pleomorphic adenomas of the salivary glands. To gain more insight into the regulation of PLAG1 function, we searched for PLAG1-interacting proteins. Using the yeast two-hybrid system, we identified karyopherin alpha2 as a PLAG1-interacting protein. Physical interaction between PLAG1 and karyopherin alpha2 was confirmed by an in vitro glutathione S-transferase pull-down assay. Karyopherin alpha2 escorts proteins into the nucleus via interaction with a nuclear localization sequence (NLS) composed of short stretches of basic amino acids. Two putative NLSs were identified in PLAG1. The predicted NLS1 (KRKR) was essential for physical interaction with karyopherin alpha2 in glutathione S-transferase pull-down assay, and its mutation resulted in decreased nuclear import of PLAG1. Moreover, NLS1 was able to drive the nuclear import of the cytoplasmic protein beta-galactosidase. In contrast, predicted NLS2 of PLAG1 (KPRK) was not involved in karyopherin alpha2 binding nor in its nuclear import. The residual nuclear import of PLAG1 after mutation of the NLS1 was assigned to the zinc finger domain of PLAG1. These observations indicate that the nuclear import of PLAG1 is governed by its zinc finger domain and by NLS1, a karyopherin alpha2 recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号