首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. A novel practical method for the synthesis of N-methyl-DL-aspartic acid 1 (NMA) and new syntheses for N-methyl-aspartic acid derivatives are described. NMA 1, the natural amino acid was synthesized by Michael addition of methylamine to dimethyl fumarate 5. Fumaric or maleic acid mono-ester and -amide were regioselectively transformed into beta-substituted aspartic acid derivatives. In the cases of maleamic 11a or fumaramic esters 11b, the α-amide derivative 13 was formed, but hydrolysis of the product provided N-methyl-DL-asparagine 9 via base catalyzed ring closure to DL-α-methylamino-succinimide 4, followed by selective ring opening. Efficient methods were developed for the preparation of NMA-α-amide 13 from unprotected NMA via sulphinamide anhydride 15 and aspartic anhydride 3 intermediate products. NMA diamide 16 was prepared from NMA dimethyl ester 6 and methylamino-succinimide 4 by ammonolysis. Temperature-dependent side reactions of methylamino-succinimide 4 led to diazocinone 18, resulted from self-condensation of methylamino-succinimide via nucleophyl ring opening and the subsequent ring-transformation.  相似文献   

2.
Nitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P. putida was cloned in pET 21b(+) and over-expressed as histidine-tagged protein in Escherichia coli. The histidine-tagged enzyme was purified from crude cell extracts of IPTG-induced cells of E. coli BL21 (DE3). Inducer replacement studies led to the identification of lactose as a suitable and cheap alternative to the costly IPTG. Effects of medium components, various physico-chemical, and process parameters (pH, temperature, aeration, and agitation) for the production of nitrilase by engineered E. coli were optimized and scaled up to a laboratory scale bioreactor (6.6 l). Finally, the recombinant E. coli whole-cells were utilized for the production of (R)-(−)-mandelic acid.  相似文献   

3.
Mycobacterium sp. 7E1B1W and seven other mycobacterial strains known to degrade hydrocarbons were investigated to determine their ability to metabolize the piperazine ring, a substructure found in many drugs. Cultures were grown at 30°C in tryptic soy broth and dosed with 3.1 mM N-phenylpiperazine hydrochloride; samples were removed at intervals and extracted with ethyl acetate. Two metabolites were purified from each of the extracts by high-performance liquid chromatography; they were identified by mass spectrometry and 1H nuclear magnetic resonance spectroscopy as N-(2-anilinoethyl)acetamide and N-acetyl-N′-phenylpiperazine. The results show that mycobacteria have the ability to acetylate piperazine rings and cleave carbon-nitrogen bonds.  相似文献   

4.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

5.
The pharmaceutically important compound N-acetylglucosamine (NAG), is used in various therapeutic formulations, skin care products and dietary supplements. Currently, NAG is being produced by an environment-unfriendly chemical process using chitin, a polysaccharide present in abundance in the exoskeleton of crustaceans, as a substrate. In the present study, we report the potential of an eco-friendly biological process for the production of NAG using recombinant bacterial enzymes, chitinase (CHI) and chitobiase (CHB). The treatment of chitin with recombinant CHI alone produced 8% NAG and 72% chitobiose, a homodimer of NAG. However, supplementation of the reaction mixture with another recombinant enzyme, CHB, resulted in approximately six fold increase in NAG production. The product, NAG, was confirmed by HPLC, TLC and ESI-MS studies. Conditions are being optimized for increased production of NAG from chitin.  相似文献   

6.
Zeng QL  Wang HQ  Liu ZR  Li BG  Zhao YF 《Amino acids》2007,33(3):537-541
Summary. Optically pure (S)-3-p-hydroxyphenyllactic acid derivatives are important intermediates of peroxisome proliferator-activated receptor α/γ dual agonists and heteropeptides. Many efforts have been made for synthesis of those intermediates, but there exist some flaws yet. We observed that dielectric constants of organic solvents drastically affected diazotization of O-benzyl-L-tyrosine. Optically pure (S)-3-p-benzyloxyphenyllactic acid was obtained by simple recrystallization when DMF or DMSO of higher dielectric constant was used as a co-solvent in diazotization of O-benzyl-L-tyrosine. It was easily turned into various optically pure (S)-3-p-hydroxyphenyllactic acid derivatives.  相似文献   

7.
The biotransformation of racemic 1-phenylethanol (30 mg) with plant cultured cells of basil (Ocimum basilicum cv. Purpurascens, 5 g wet wt) by shaking 120 rpm at 25°C for 7 days in the dark gave (R)-(+)-1-phenylethanol and acetophenone in 34 and 24% yields, respectively. The biotransformation can be applied to other 1-arylethanols and basil cells oxidized the (S)-alcohols to the corresponding ketones remaining the (R)-alcohols in excellent ee.  相似文献   

8.
<Emphasis Type="Italic">N</Emphasis>-halamine biocidal coatings   总被引:2,自引:1,他引:1  
Novel N-halamine siloxane and epoxide coatings are described. The coatings can be rendered biocidal by exposure to dilute bleach. Once the bound chlorine is lost from the coatings, it can be regenerated by further exposure to dilute bleach. Synthetic schemes and biocidal efficacy data are presented. The stabilities of the bound chlorine on the surfaces are also addressed. Substrates employed include sand, textiles, and paint. Potential uses for the technology are discussed.  相似文献   

9.
A β-N-acetylglucosaminidase produced by a novel fungal source, the moderately thermophilic aerobic ascomycete Talaromyces emersonii, was purified to apparent homogeneity. Submerged fermentation of T. emersonii, in liquid medium containing algal fucoidan as the main carbon source, yielded significant amounts of extracellular N-acetylglucosaminidase activity. The N-acetylglucosaminidase present in the culture-supernatant was purified by hydrophobic interaction chromatography and preparative electrophoresis. The enzyme is a dimer with molecular weight and pI values of 140 and 3.85, respectively. Substrate specificity studies confirmed the glycan specificity of the enzyme for N-acetylglucosamine. Michaelis-Menten kinetics were observed during enzyme-catalyzed hydrolysis of the fluorescent substrate methylumbelliferyl-β-D-N-acetylglucosaminide at 50°C, pH 5.0 (Km value of 0.5 mM). The purified N-acetylglucosaminidase displayed activity over broad ranges of pH and temperature, yielding respective optimum values of pH 5.0 and 75°C. The T. emersonii enzyme was less susceptible to inhibition by N-acetylglucosamine and other related sugars than orthologs from other sources. The enzyme was sensitive to Hg2+, Co2+ and Fe3+.  相似文献   

10.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

11.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

12.
Summary. The 1-(N-trifluoroacetylamino)alkylphosphonic acids (TFA-AAP) – sub-products in the synthesis of O,O-dialkyl 1-(N-trifluoroacetylamino)alkylphosphonates and O,O-diethyl 1-aminoalkylphosphonates, were synthesized in two-stage transformations of 1-aminoalkylphosphonic acids including: trifluoroacetylation of 1-aminoalkylphosphonic acids (AAP) using a trifluoroacetic anhydride/trifluoroacetic acid reagent (AAP + TFAA/TFA→2) and subsequent hydrolysis of the intermediary compounds 2 into desired TFA-AAP (2→TFA-AAP). These intermediates 2 presented mixtures of the type of mixed anhydrides of TFAA and 1-(N-trifluoroacetylamino)alkylphosphonic, pyrophosphonic and polyphosphonic acids, which underwent rapid and quantitative conversion to corresponding TFA-AAP during treatment with an excess of water. The title acids were isolated by direct evaporation of the corresponding post-reaction mixtures, and their physicochemical proprieties, including deacylation abilities, were determined. TFA-AAP compounds can be re-converted into the starting amino acids AAP under respectively mild conditions (AAP→TFA-AAP→AAP).  相似文献   

13.
14.
Summary In wild-type Scopolia parvilfora (Solanaceae) tissues, only the roots express the enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53), which is the first specific precursor of the tropane alkaloids. Moreover, the tropanane alkaloid levels were the highest in the root (0.9 mg g−1 on a dry weight basis), followed by the stem and then the leaves. We metabolically engineered S. parviflora by introducing the tobacco pmt gene into its genome by a binary vector system that employs disarmed Agrobacterium rhizogenes. The kanamycin-resistant hairy root lines were shown to bear the pmt gene and to overexpress its mRNA and protein product by at least two-fold, as determined by polymerase chain reaction (PCR) and Northern and Western blottings, respectively. The transgenic lines also showed higher PMT activity and were morphologically aberrant in terms of slower growth and the production of lateral roots. The overexpression of pmt markedly elevated the scopolamine and hyoscyamine levels in the transgenic lines that showed the highest pmt mRNA and PMT protein levels. Thus, overexpression of the upstream regulator of the tropane alkaloid pathway enhanced the biosynthesis of the final product. These observations may be useful in establishing root culture systems that generate large yields of tropane alkaloids. These authors contributed equally to this paper (co-first authors).  相似文献   

15.
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme for the biosynthesis of sialic acids, terminal components of glycoconjugates associated with a variety of physiological and pathological processes. Different protein isoforms of human and mouse GNE, deriving from splice variants, were predicted recently: GNE1 represents the GNE protein described in several studies before, GNE2 and GNE3 are proteins with extended and deleted N-termini, respectively. hGNE2, recombinantly expressed in insect and mamalian cells, displayed selective reduction of UDP-GlcNAc 2-epimerase activity by the loss of its tetrameric state, which is essential for full enzyme activity. hGNE3, which had to be expressed in Escherichia coli, only possessed kinase activity, whereas mGNE1 and mGNE2 showed no significant differences. Our data therefore suggest a role of GNE1 in basic supply of cells with sialic acids, whereas GNE2 and GNE3 may have a function in fine-tuning of the sialic acid pathway.  相似文献   

16.
Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial d-fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the d-fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. S. Foley and E. Stolarczyk contributed equally to this work  相似文献   

17.
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.  相似文献   

18.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

19.
The synthesis of optically active (R)-2-trimethylsilyl-2-hydroxyl-ethylcyanide by asymmetric trans-cyanation of acetyltrimethylsilane with acetone cyanohydrin in a biphasic system was achieved using (R)-oxynitrilase from loquat seed meal. Diisopropyl ether was the most suitable organic phase among the organic solvents examined. The optimal concentration of acetyltrimethylsilane, concentration of crude enzyme, volume ratio of the aqueous to the organic phase, temperature and the buffer pH value were 14 mM, 61.4 U ml-1, 13% (v/v), 30 °C and 4, respectively. The substrate conversion and the product enantiomeric excess were 95% and 98% under the optimized conditions. Acetyltrimethylsilane was a better substrate of the enzyme than its carbon counterpart. Revisions requested 24 August 2004; Revisions received 12 November 2004  相似文献   

20.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号