首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of nucleotides comprising genes V, VII, and VIII of bacteriophage f1 was determined. The sequence was found to differ from that of the corresponding region of the related fd genome by eight base substitutions in gene V and one in gene VIII. The structure of gene VII was completely conserved between these two viruses and was identical to that of bacteriophage M13. Both transitions and transversions were found in cases where bases were substituted, but all substitutions were in the third codon position and had no effect on the structure of the corresponding protein product. The gene V protein product could thus be deduced to be identical to that of the corresponding proteins from bacteriophages fd and M13. A potential EcoRII cleavage site was formed by nucleotides 172 to 176 of gene V. Replicative form DNA form DNA from bacteriophage f1 is normally resistant to this enzyme, and evidence is presented to suggest that the sequence was modified through methylation of cytosine 173. The probable locations of other modified nucleotides in the sequence are discussed.  相似文献   

2.
3.
Interchromosomal mitotic recombination in yeast can be stimulated by the protein encoded by gene II of bacteriophage f1. The normal role of the gene II enzyme is to make a site-specific cleavage of a particular strand of the duplex form of the bacteriophage DNA at the origin of DNA replication. The gene II protein was expressed in yeast in an attempt to determine the role of nicked DNA in the initiation of recombination. Stimulation of recombination in yeast by the gene II protein was dependent on the presence of a recognition site for gene II enzyme in the region being assayed. Recombination was stimulated in both directions from the gene II recognition site but showed a directional bias. The distribution of alleles among the recombinants indicated that the chromosome with the gene II recognition site acted as the recipient in gene conversion events.  相似文献   

4.
《Gene》1988,71(1):41-47
A simple and widely applicable procedure for constructing synthetic variants of a gene, involving the synthesis of only one strand of DNA, has been developed. The method is suited for cases in which a cloned DNA with a sequence related to the gene to be constructed is available. First, a heteroduplex DNA which is single-stranded throughout the region of interest is made. This single-stranded region is then used as a template to correctly align and allow ligation of synthetic oligos corresponding to the entire gene. To favor the replication of the strand encoding the synthetic gene, a template strand containing some substitutions of deoxyuridine for deoxythymidine is used. This procedure was used to construct a synthetic bacteriophage f1 gene V which differs from the wild-type (wt) gene at 45 positions out of 298. The synthetic gene was designed to include nine restriction sites without altering the sequence of the encoded DNA-binding protein. The gene construction was found to be very efficient, and about 40 % of the resulting plasmids contained the desired synthetic gene. The synthetic gene was found to be fully active and could substitute for the wt gene in bacteriophage f1.  相似文献   

5.
Injection of DNA into liposomes by bacteriophage lambda   总被引:4,自引:0,他引:4  
Small unilamellar vesicles (75-100 nm diameter) and large liposomes (greater than 1 micron in diameter) were prepared containing the lamB protein, an outer membrane protein of Escherichia coli and Shigella which serves as the receptor for bacteriophage lambda. Bacteriophage were observed to bind to these liposomes and vesicles by their tails and in most cases the heads of the bound bacteriophage appeared empty or partially empty of DNA. The lambda DNA was usually only partially ejected from the bacteriophage head when small unilamellar liposomes were used, presumably because the vesicles are too small to contain all the DNA. The partially ejected DNA was not susceptible to DNase unless the vesicle bilayer was first disrupted suggesting that DNA injection of phage DNA into the vesicle had occurred. After disruption of these vesicles on electron microscope grids, the bacteriophage are seen to have partially empty heads and a small mass of DNA associated with their tails. Using larger liposomes prepared by the fusion of lamB bearing vesicles with polyethylene glycol and n-hexyl bromide, the heads of most of the bound bacteriophage appeared to be completely empty of DNA. Disruption of these preparations on electron microscope grids revealed circular arrays of empty-headed bacteriophage surrounding DNA which had apparently been contained within the intact liposomes. These results indicate that high molecular weight DNA can be entrapped within liposomes with high efficiency by ejection from bacteriophage lambda. The possible use of these DNA-containing liposomes to facilitate gene transfer in eukaryotic cells is discussed.  相似文献   

6.
Nucleotide sequence of bacteriophage f1 DNA.   总被引:30,自引:2,他引:28       下载免费PDF全文
The nucleotide sequence of the DNA of the filamentous coliphage f1 has been determined. In agreement with earlier conclusions, the genome was found to comprise 6,407 nucleotides, 1 less than that of the related phage fd. Phage f1 DNA differs from that of phage M13 by 52 nucleotide changes, which lead to 5 amino acid substitutions in the corresponding proteins of the two phages, and from phage fd DNA by 186 nucleotide changes (including the single-nucleotide deletion), which lead to 12 amino acid differences between the proteins of phages f1 and fd. More than one-half of the nucleotide changes in each case are found in the sequence of 1,786 nucleotides comprising gene IV and the major intergenic region between gene IV and gene II. The sequence of this intergenic region (nucleotides 5501 to 6005) of phage f1 differs from the sequence reported by others through the inclusion of additional single nucleotides in eight positions and of a run of 13 nucleotides between positions 5885 and 5897, a point of uncertainty in the earlier published sequence. The differences between the sequence of bacteriophage f1 DNA now presented and a complete sequence for the DNA previously published by others are discussed, and the f1 DNA sequence is compared with those of bacteriophages M13 and fd.  相似文献   

7.
Protection of restriction endonuclease cleavage sites by Escherichia coli RNA polymerase bound to the replicative form I of bacteriophage S13 DNA has been used to identify a number of regions of RNA polymerase binding. Digestion with HincII, AluI, HinfI, or HaeIII, under conditions optimized for "open" complex formation, revealed 12 regions of RNA polymerase binding. Based on differential salt sensitivities, five of the regions were classified as strong or tight binding sites. These were located before genes A (two sites), B, and D and at the 5' end of gene F. The seven regions which exhibited weaker binding were located at the 5' end of gene C (two sites), in the middle of gene D, just before and at the 3' end of gene F, at the 5' end of gene G, and in the middle of gene H. The sites before genes B and D coincide with sites previously identified as promoters in bacteriophage phi X174. One of the sites before gene A, that at nucleotides 5175-5211, represents a new putative promoter site in bacteriophage S13 and phi X174 located before the previously identified A gene promoter at nucleotides 10-45.  相似文献   

8.
In vitro transcription of E. coli tRNA genes.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

9.
The intergenic region of bacteriophage f1 has been subcloned into the bacteriophage SP6 promoter plasmids, pSP64 and pSP65, in both orientations. Coinfection of E. coli with these SP6 promoter/phage f1 chimeric plasmids and the interference resistance phage, IR1, results in the replication and secretion of the pSP6.f1 plasmids as single stranded DNA. Bovine preProPTH cDNAs in both the native form and a form containing an insertion of 117 base pairs in the protein coding region have been inserted in these plasmids. The RNA transcribed from the SP6.f1/preProPTH cDNA constructs was efficiently translated in the wheat germ or reticulocyte cell free systems without addition of a 7-methylguanosine cap to the RNA. In the presence of dog pancreatic or chicken oviduct microsomal membranes, conversion of the resultant pre-proteins to pro-proteins was observed. Confirmation of the "mutated" preProPTH cDNA was determined by dideoxyribonucleotide DNA sequencing of single stranded plasmid DNA. These vectors are suitable for the efficient biosynthesis of large amounts of single or double stranded DNA, and translationally active RNA. The combined properties of single stranded DNA replication and the SP6 promoter simplify the engineering of mutant RNAs and their corresponding proteins. In addition, single stranded DNA or RNA corresponding to either complementary strand may be synthesized as nucleic acid hybridization probes.  相似文献   

10.
11.
The origin of DNA replication of bacteriophage f1 functions as a signal, not only for initiation of viral strand synthesis, but also for its termination. Viral (plus) strand synthesis initiates and terminates at a specific site (plus origin) that is recognized and nicked by the viral gene II protein. Mutational analysis of the 5' side (upstream) of the origin of plus strand replication of phage f1 led us to postulate the existence of a set of overlapping functional domains. These included ones for strand nicking, and initiation and termination of DNA synthesis. Mutational analysis of the 3' side (downstream) of the origin has verified the existence of these domains and determined their extent. The results indicate that the f1 "functional origin" can be divided into two domains: (1) a "core region", about 40 nucleotides long, that is absolutely required for plus strand synthesis and contains three distinct but partially overlapping signals, (a) the gene II protein recognition sequence, which is necessary both for plus strand initiation and termination, (b) the termination signal, which extends for eight more nucleotides on the 5' side of the gene II protein recognition sequence, (c) the initiation signal that extends for about ten more nucleotides on the 3' side of the gene II protein recognition sequence; (2) a "secondary region", 100 nucleotides long, required exclusively for plus strand initiation. Disruption of the secondary region does not completely abolish the functionality of the f1 origin but does drastically reduce it (1% residual biological activity). We discuss a possible explanation of the fact that this region can be interrupted (e.g. f1, M13 cloning vectors) by large insertions of foreign DNA without significantly affecting replication.  相似文献   

12.
λ噬菌体穿孔素(holin) 蛋白触发裂菌的分子机制   总被引:2,自引:0,他引:2  
穿孔素-裂解酶二元裂解系统是双链DNA噬菌体普遍采用的裂菌模式,以λ噬菌体为例,系统地揭示了噬菌体穿孔素的结构与功能。λ噬菌体的S基因的特征是呈双起始基序(dual-start motif),编码穿孔素(holin)S105和抗穿孔素(antiholin)S107,通过二者不同水平的表达及相互作用,触发裂菌过程。作者综述了λ噬菌体穿孔素的膜拓扑结构和成孔机制的最新研究进展,并展望了穿孔素的研究热点和应用前景。  相似文献   

13.
The filamentous bacteriophage f1 can be transformed into a spherical particle (spheroid) or an intermediate shortened filament with a flared end (I-forms) by exposure to a chloroform-water interface at 22 or 4 degrees C, respectively. The protein composition of bacteriophage f1 spheroids and I-forms was examined by separating the proteins from the purified. [35S]cysteine-labeled particles by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. Quantitation of the radioactivity on the gels showed that I-forms and spheroids contain the same complement of minor coat proteins as do untreated f1 phage. This composition is unchanged after removal of the DNA, either by digestion with micrococcal nuclease or by centrifugation of the particles through CsCl density gradients, indicating that none of the minor coat proteins is held in the particles solely through an interaction with the DNA. We also examined the location of the A protein in I-forms by decoration with ferritin-conjugated antibodies and examination under the electron microscope and found that the A protein is located specifically at the flared end of the I-form particle, through which the DNA is extruded and at which contraction into spheroids begins. The implications of these results with regard to the orientation of the DNA within the capsid and the process of infection are discussed.  相似文献   

14.
The Escherichia coli K5 capsular polysaccharide [-4)-betaGlcA-(1, 4)-alphaGlcNAc-(1-] is a receptor for the capsule-specific bacteriophage K5A. Associated with the structure of bacteriophage K5A is a polysaccharide lyase which degrades the K5 capsule to expose the underlying bacterial cell surface. The bacteriophage K5A lyase gene (kflA) was cloned and sequenced. The kflA gene encodes a polypeptide with a predicted molecular mass of 66.9 kDa and which exhibits amino acid homology with ElmA, a K5 polysaccharide lyase encoded on the chromosome of E. coli SEBR 3282. There was only limited nucleotide homology between the kflA and elmA genes, suggesting that these two genes are distinct and either have been derived from separate progenitors or have diverged from a common progenitor for a considerable length of time. Southern blot analysis revealed that kflA was not present on the chromosome of the E. coli strains examined. In contrast, elmA was present in a subset of E. coli strains. Homology was observed between DNA flanking the kflA gene of bacteriophage K5A and DNA flanking a small open reading frame (ORF(L)) located 5' of the endosialidase gene of the E. coli K1 capsule-specific bacteriophage K1E. The DNA homology between these noncoding sequences indicated that bacteriophages K5A and K1E were related. The deduced polypeptide sequence of ORF(L) in bacteriophage K1E exhibited homology to the N terminus of KflA from bacteriophage K5A, suggesting that ORF(L) is a truncated remnant of KflA. The presence of this truncated kflA gene implies that bacteriophage K1E has evolved from bacteriophage K5A by acquisition of the endosialidase gene and subsequent loss of functional kflA. A (His)(6)-KflA fusion protein was overexpressed in E. coli and purified to homogeneity with a yield of 4.8 mg per liter of bacterial culture. The recombinant enzyme was active over a broad pH range and NaCl concentration and was capable of degrading K5 polysaccharide into a low-molecular-weight product.  相似文献   

15.
Organization of the bacteriophage P1 tail-fibre operon   总被引:9,自引:0,他引:9  
A Guidolin  J M Zingg  W Arber 《Gene》1989,76(2):239-243
  相似文献   

16.
17.
The origin of DNA replication of the filamentous bacteriophage f1 binds its initiator protein (gene II protein) in vitro to form a complex that can be trapped on nitrocellulose filters. The binding occurs with both superhelical form DNA and linear DNA fragments. A number of defective mutants of the origin were tested for the ability to bind gene II protein. The region of DNA required for the binding is around a second palindrome downstream from the palindrome that contains the DNA replication initiation site. It overlaps, but is not identical to, the region required for the nicking reaction by the protein. The nicking site itself was dispensable for the binding. In vivo, a number of defective deletion mutants of the origin, when in a plasmid, inhibited growth of superinfecting phage if the intracellular level of gene II protein was low. In addition, these defective origins inhibited the activity of the functional phage origin located on the same replicon. The domain of the DNA sequence required for inhibition in vivo was consistent with that for the binding in vitro.  相似文献   

18.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

19.
A dense complex has been isolated from bacteria infected with gene V amber mutant f 1 bacteriophage. The major protein in this complex is the f 1 bacteriophage-specific gene II protein. Other proteins in the complex include the f 1 bacteriophage coat protein and proteins which migrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis with the f1 bacteriophage-specific gene III, gene IV and X protein. A protein of approximately 20,000 Mr is also present in the complex. Examination of bacteria infected with gene V mutant f1 bacteriophage revealed the complex as a densely staining amorphous body which appears to be associated with the cytoplasmic membrane. Bacteria infected with f1 bacteriophage that contain amber mutations in genes other than gene V do not contain this complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号