首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified, cloned and sequenced the three ribosomal RNA (rRNA) operons (rrn) present in the facultative photoheterotroph Rhodobacter sphaeroides. DNA sequence analysis has identified the 16S, 23S, and 5S rRNAs, two tRNAs (ile and ala) in the spacer region between the 16S and 23S rRNAs, and an f-met tRNA immediately following the 5S rRNA gene of all three operons. Physical mapping, genetic analysis, and Southern hybridization data indicate that rrnA is contained on a large chromosome and rrnB and rrnC are contained on a second smaller chromosome. These findings are discussed in relation to the origins of diploidy.  相似文献   

2.
Rhodopseudomonas palustris strains carry one or two ribosomal rRNA operons, and those with duplicated rrn operons grow faster. The two rrn operons in R. palustris No. 7 are virtually identical over a 54,70-bp stretch containing the genes for 16S rRNA, tRNAile, tRNAala, 23S rRNA and 5S rRNA, as well as the intergenic spacers and part of the extragenic spacer. In R. palustris, unlike most bacteria with multiple rrn operons, the putative promoter sequences of the two operons are highly diverged, suggesting possible functional differentiation. By simultaneous primer-extension analysis of both pre-rRNAs, we detected a two-fold higher level of expression from rrnA under photoautotrophic conditions. Alteration of the conditions of growth leads to changes in the relative levels of expression of the two operons. Within the 5,470-bp segment, only two sequence differences are found between the 23S rRNA genes; one is at the center of the 23S rRNA molecule and affects a site of unknown function, and the other is within or immediately adjacent to sequences involved in processing of the 5' 23S rRNA IVS. In vitro processing of 5' IVS-containing 23S rRNA precursors from each operon does not reveal any detectable difference between them. The 5' ends of the mature 16S, 23S, and 5S rRNAs were determined by primer-extension analysis, and the 3' end of 23S rRNA was determined by RNA linker ligation-mediated cDNA cloning. The 5' and 3' ends of the R. palustris 23S rRNA molecule are extensively processed, suggesting that, unlike the situation in the established eubacterial model, these ends cannot basepair.  相似文献   

3.
Annotation of rRNA genes has been incomplete in Agrobacterium species although a number of Agrobacterial rDNA fragments have been sequenced. In this study, precise characterization of rRNA operons (rrn) was carried out in two biovar 1 strains, C58 and MAFF301001. Complete DNA sequencing of four rrns in MAFF301001 indicated that each operon codes for 16S, 23S and 5S rRNA as well as three tRNAs, trn(Ile), trn(Ala) and trn(Met). The genes and 16S-23S ITS of a given locus were exactly identical with those in the other three loci, except for a T-base loss in the 23S rRNA gene of rrnA and in the 5S rRNA gene of rrnB. Comparison with the four C58 rDNAs available in the DNA database indicated extensive sequence and size variations in the 23S rRNA gene, suggesting the presence of an intervening sequence (IVS). Biochemical RNA analysis, including Northern hybridization and 5' end mapping, in MAFF301001 revealed 2886-base and 2571-base precursors, two 1.3-kb major fragments, a 150-base fragment and removal of an IVS for 23S rRNA. We confirmed similar biochemical characteristics in the C58 strain. The features of rDNA detected here enable correction of previously reported information about Agrobacterial rRNAs and rRNA genes and should be useful for phylogenetic considerations.  相似文献   

4.
Saito R  Ozawa Y  Kuzuno N  Tomita M 《Gene》2000,259(1-2):217-222
The processing of 16S rRNA and 23S rRNA by RNase III in E.coli is known to involve stem structures formed by both ends of the rRNA. Indeed, complementary nucleotide sequences are usually found at both ends of 16S rRNA and 23S rRNA. However, whether or not this phenomenon exists in various other bacteria has not yet been adequately studied. We have conducted computer analyses of potential stem structures of rRNA operons in 12 bacterial and 3 archaeal genomes, and compared characteristics of the stem structures among these species. We systematically computed free energy values by exhaustively 'annealing' sequences around the 5' end and sequences around the 3' end of both 16S rRNA and 23S rRNA genes, in order to predict potential stem structures.The results suggest that rRNAs in most species form stem structures at both ends. Some species, such as A.aeolicus, seem to form unusually stable stem structures. On the other hand, some rRNAs, such as rRNAs of D.radiodurans, seem not to form solid stem structures. This suggests that rRNA processing in those species must employ a reliable targeting mechanism other than recognizing stem structures by RNase III.  相似文献   

5.
Genomic organization of rDNA in Pseudomonas aeruginosa   总被引:8,自引:0,他引:8  
  相似文献   

6.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

7.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

8.
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.  相似文献   

9.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNA(Ile) genes between the 16S and 23S rDNAs, and the other had a tRNA(Ile) genes between the 16S and 23S rDNAs and a tRNA(Asn) gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

10.
11.
Organization of rRNA genes in Mycobacterium bovis BCG.   总被引:15,自引:9,他引:15       下载免费PDF全文
The number of rRNA genes in Mycobacterium bovis BCG was examined by Southern hybridization of end-labeled 5S, 16S, and 23S rRNAs with BamHI, PstI, and SalI digests of M. bovis BCG DNA. Each RNA probe gave only one radioactive band with three kinds of DNA digest. These results suggest that M. bovis BCG chromosomes may carry only a minimum set of rRNA genes. Hybridization of randomly labeled rRNAs with BamHI, PstI, SalI, BglII, and PvuII digests of DNA from the same organism supported these conclusions. The 6.4-kilobase-pair SalI fragment containing the entire structural genes for both 16S and 23S rRNAs was cloned into pBR322. The cloned fragment was characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis, and the R-loop technique. The results indicated that the fragments contained rRNA genes in the following order: 16S, 23S, and 5S rRNA genes. No tRNA gene was detected in the spacer region between the 16S and 23S rRNA genes, but one was found downstream of the 23S rRNA and 5S rRNA genes.  相似文献   

12.
We have determined the sequences of the 3'-terminal approximately 100 nucleotides of [5' -32P]pCp-labeled wheat mitochondrial, wheat cytosol, and E. coli small sub-unit rRNAs. Sequence comparison demonstrates that within this region, there is a substantially greater degree of homology between wheat mitochondrial 18S and E. coli 16S rRNAs than between either of these and wheat cytosol 18S rRNA. Moreover, at a position occupied by 3-methyluridine in E. coli 16S rRNA, the same (or a very similar) modified nucleoside is present in wheat mitochondrial 18S rRNA but not in wheat cytosol 18S rRNA. Further, E. coli 16S and 23S rRNAs hybridize extensively to wheat mitochondrial 18S and 26S rRNA genes, respectively, but wheat cytosol 18S and 26S rRNAs do not. No other mitochondrial system studies to date has provided comparable evidence that a mitochondrial rRNA is more closely related to its eubacterial homolog than is its counterpart in the cytoplasmic compartment of the same cell. The results reported here provide additional support for the view that plant mitochondria are of endosymbiotic, specifically eubacterial, origin.  相似文献   

13.
Some rRNA operons in E. coli have tRNA genes at their distal ends.   总被引:25,自引:0,他引:25  
We have previously isolated seven rRNA operons on plasmids or lambda transducing phages and identified various tRNAs encoded by these operons. Each of the seven operons has one of two different spacer tRNA gene arrangements between the genes for 16S and 23S rRNA: either tRNAGlu2 or both tRNAIle1 and tRNAAla1B genes. In addition, various tRNA genes are located at or near the distal ends of rRNA operons. In particular, genes for tRNATrp and tRNAAsp1 are located at the distal end of rrnC at 83 min on the E. coli chromosome. Experiments with various hybrid plasmids, some of which lack the rRNA promoter, have now demonstrated that this promoter is necessary for expression of the distal tRNA genes. Rifampicin run-out experiments have also provided evidence that the tRNATrp gene is located farther from its promoter than the spacer tRNA gene or the 5S RNA gene. These results confirm the localization of genes for tRNATrp and tRNAAsp1 at the distal end of rrnC and strongly suggest that they are co-transcribed with the genes for 16S, tRNAGlu2, 23S and 5S RNA. Other such distal tRNAs have been identified, and it is suggested that they too are part of rRNA operons.  相似文献   

14.
The number of ribosomal RNA genes in Thermus thermophilus HB8.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have examined the number of rRNA genes in Thermus thermophilus HB8 by hybridization of Bam HI -, Hind III - and Pst I - digests of DNA to 3'- (3 2p) 23S, 16S and 5S rRNAs according to the Southern procedure. The restriction gels gave two radioactive bands with 23S and 5S rRNA. Furthermore, band positions were indistinguishable from one another when 23S and 5S rRNAs were used as probes to Bam HI and Hind III digests, indicating that each band contains sequences corresponding to the 3'-end of 23S and 5S rRNAs. The Pst I digest also gave two radioactive bands with 23S and 5S rRNAs as probes, where one band position was identical, but the other different. The 16S rRNA did hybridize with two fragments, using a Bam HI, as well as a Bam HI - Hind III double digest. The Hind III digest gave one band using 16S rRNA as a probe. It is concluded that the Thermus thermophilus HB8 chromosome carries at least two sets of genes for 23S, 16S and 5S rRNAs.  相似文献   

15.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

16.
Phytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma. Both operons have rRNA genes organized as 5'-16S-23S-5S-3' with very highly conserved sequences; the 16S, 23S, and 5S rRNA genes are 99.9, 99.8, and 99.1% identical between the two operons. However, the organization of tRNA genes in the upstream region from 16S rRNA gene and in the downstream region from 5S rRNA gene differs markedly. Several promoter candidates were detected upstream from both operons, which suggests that both operons are functional. Interestingly, both have a tRNA(Ile) gene in the 16S-23S spacer region, while the reported rrnB operon of loofah witches' broom phytoplasma does not, indicating heterogenous gene organization of rrnB within phytoplasmas. The phytoplasma tRNA gene organization is similar to that of acholeplasmas, a closely related mollicute, and different from that of mycoplasmas, another mollicute. Moreover, the organization suggests that the rrn operons were derived from that of a related nonmollicute bacterium, Bacillus subtilis. This data should shed light on the evolutionary relationships and phylogeny of the mollicutes.  相似文献   

17.
The excision of intervening sequences from Salmonella 23S ribosomal RNA   总被引:31,自引:0,他引:31  
A B Burgin  K Parodos  D J Lane  N R Pace 《Cell》1990,60(3):405-414
Novel, approximately 90 bp intervening sequences (IVs) were discovered within the 23S rRNA genes of S. typhimurium and S. arizonae. These non-rRNA sequences are transcribed and then excised during rRNA maturation. The rRNA fragments that result from the excision of the extra sequences are not religated. This results in fragmented 23S rRNAs. The excision of one IVS was shown to be catalyzed in vivo and in vitro by ribonuclease III. These IVSs are highly volatile evolutionarily, sometimes occurring in only some of the multiple rRNA operons of a particular cell. The sporadic nature of the occurrence of fragmented rRNAs among closely related organisms argues that such fragmentation is a derived state, not a primitive one. Possible sources of these IVSs, their parallels with internal transcribed spacers and introns in eukaryotes, and their possible roles in the evolutionary process are discussed.  相似文献   

18.
19.
20.
Y Suzuki  Y Ono  A Nagata    T Yamada 《Journal of bacteriology》1988,170(4):1631-1636
The number of rRNA genes in Streptomyces lividans was examined by Southern hybridization. Randomly labeled 23 and 16S rRNAs were hybridized with BamHI, BglII, PstI, SalI, or XhoI digests of S. lividans TK21 DNA. BamHi, BglII, SalI and XhoI digests yielded six radioactive bands each for the 23 and 16S rRNAs, whereas PstI digests gave one band for the 23S rRNA and one high-intensity band and six low-density bands for the 16S rRNA. The 7.4-kilobase-pair BamHI fragment containing one of the rRNA gene clusters was cloned into plasmid pBR322. The hybrid plasmid, pSLTK1, was characterized by physical mapping, Southern hybridization, and electron microscopic analysis of the R loops formed between pSLTK1 and the 23 and 16S rRNAs. There were at least six rRNA genes in S. lividans TK21. The 16 and 23S rRNA genes were estimated to be about 1.40 and 3.17 kilobase pairs, respectively. The genes for the rRNAs were aligned in the sequence 16S-23S-5S. tRNA genes were not found in the spacer region or in the context of the rRNA genes. The G + C content of the spacer region was calculated to be approximately 58%, in contrast to 73% for the chromosome as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号