首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Activation of casein kinase II by sphingosine   总被引:2,自引:0,他引:2  
Sphingosine activates casein kinase II in the presence of endogenous substrates as well as a synthetic peptide substrate. The activation response occurred between 12 and 25 micrograms/ml sphingosine and exhibited positive cooperativity with a Hill coefficient of 3.0. Sphingosine not only increased the Vmax of casein kinase II but decreased the Km(app) for the peptide substrate from 0.5 to 0.08 mM. In contrast, the Km(app) for MgCl2 was increased from 0.12 to 0.7 mM. Consequently, sphingosine altered significantly several parameters which determine casein kinase II activity. The effect of sphingosine was relatively specific, inasmuch as related lipids were less potent activators or largely ineffective in stimulating casein kinase II. On the other hand, the effect of sphingosine itself could be potentiated or inhibited by other lipids. Ceramide and sphingosylphosphorylcholine augmented the sphingosine effect. Phospholipids alone did not alter the activity of casein kinase II significantly, but abolished enzyme activation by sphingosine with different potencies (phosphatidylserine greater than phosphatidylethanolamine greater than phosphatidylinositol greater than phosphatidylcholine). Moreover, the sphingosine effect could be abrogated by KCI and NaCl, which alone are known to induce enzyme activation and dissociation of aggregated casein kinase II protein; LiCl and NH4Cl also inhibited the sphingosine effect. Polyamines, known activators of casein kinase II, partially mimicked the effect of sphingosine on endogenous polypeptide phosphorylation but failed to do so with the peptide substrate. These observations demonstrate that sphingosine is a potent activator of casein kinase II. The potential pharmacological and physiological modulation of casein kinase II by sphingoid bases is discussed.  相似文献   

2.
Sphingosine 1-phosphate (S1P), a product of sphingosine kinases (SphK), mediates diverse biological processes such as cell differentiation, proliferation, motility, and apoptosis. In an effort to search and identify specific inhibitors of human SphK, the inhibitory effects of synthetic sphingoid analogs on kinase activity were examined. Among the analogs tested, we found two, SG12 and SG14, that have specific inhibitory effects on hSphK2. N,N-Dimethylsphingosine (DMS), a well-known SphK inhibitor, displayed inhibitory effects for both SphK1 and SphK2, as well as protein kinase C. In contrast, SG12 and SG14 exhibited selective inhibitory effects on hSphK2. Furthermore, SG14 did not affect PKC. In isolated platelets, SG14 blocked the conversion of sphingosine into sphingosine 1-phosphate significantly. This is the first report on the identification of a hSphK2-specific inhibitor, which may provide a useful tool for studying the biological functions of hSphK2.  相似文献   

3.
We have previously shown that sphingosine inhibits depolarisation-induced calcium influx through voltage-operated calcium channels (VOCCs) in GH(4)C(1) cells, whereas sphingosine-1-phosphate (S1P) does not. In the present study we investigated whether sphingosine kinase modulates VOCC activity in GH(4)C(1) cells by removing inhibitory sphingosine. Sphingosine and the structurally similar sphingosine kinase inhibitor dimethylsphingosine (DMS) both rapidly attenuated the calcium influx evoked by depolarisation. The inhibitory effect declined over time to a greater extent in cells treated with sphingosine than in cells treated with DMS, indicating that sphingosine is being metabolised more rapidly. When the specific sphingosine kinase inhibitor 2-(p-Hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKi) was added to the cells after depolarisation there was likewise a reduction of the calcium response. This inhibitory effect was slow and reached a plateau about 3 min after application. In contrast, the sphingosine-mediated inhibition was immediate, suggesting that the SKi-induced inhibition was due to build-up of cellular sphingosine. In experiments on cells overexpressing sphingosine kinase, the inhibitory effect of sphingosine was reversed faster than in control cells. The effect was not due to the produced S1P, since S1P did not have any effect on VOCCs even at concentrations as high as 50 microM. In patch-clamp experiments the calcium entry through VOCCs was attenuated in GH(4)C(1) cells overexpressing a kinase-dead sphingosine kinase, compared with cells overexpressing the wild type sphingosine kinase. In addition, in cells treated with SKi the calcium entry through VOCCs was attenuated compared with control cells. Our results provide compelling evidence that sphingosine kinase regulates the function of voltage-operated calcium channels in GH(4)C(1) cells, not through its catalytic product, but by removal of the substrate sphingosine.  相似文献   

4.
Sphingosine 1-phosphate is an intermediate of sphingosine catabolism as well as a potent signaling compound. Conditions were established for the extraction and analysis of sphingosine 1-phosphate and other sphingoid base 1-phosphates from in vitro sphingosine kinase assays and other biological samples. The sphingoid base 1-phosphates were extracted in high yield (85%) using small C-18 reverse-phase columns (LiChroprep RP-18). After the extracts were treated with 0.1 N KOH to remove glycerolipids, the sphingoid base 1-phosphates were converted to fluorescent o-phthalaldehyde derivatives that were separated by HPLC using C-18 columns with a mobile phase of methanol:10 mM potassium phosphate (pH 7.2):1 M tetrabutylammonium dihydrogen phosphate (in water) (83:16:1, v/v/v). The o-phthalaldehyde derivative of sphingosine 1-phosphate was reasonably stable (t(1/2) > or = 18 h) when EDTA was present and could be detected in picomole amounts. The HPLC retention time of the sphingoid base 1-phosphates could be shifted by adjusting the mobile phase to pH 5.5, which is useful in separating overlapping compounds (such as sphingosine 1-phosphate and 4-D-hydroxysphinganine) and in confirming the identity of sphingoid base 1-phosphates in biological samples. The extraction procedure and HPLC method facilitated assays of sphingosine kinase with different sphingoid bases as substrates and/or inhibitors and enabled the quantitation of sphingoid base 1-phosphates in human plasma, serum, and platelets as well as in strains of Saccharomyces cerevisae with mutations in sphingolipid metabolism.  相似文献   

5.
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate.  相似文献   

6.
Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Delta4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein alpha-subunit gene, GPA1.  相似文献   

7.
The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.  相似文献   

8.
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.  相似文献   

9.
The combined effects of cholesterol, a major cell membrane component, and the lipid second messenger diacylglycerol on the activity of protein kinase C (PK-C) and the structure of phosphatidylcholine/phosphatidylserine bilayers were investigated using specific PK-C assays and 2H NMR. Whereas the classical activation of PK-C was observed as an effect of diacylglycerol, in the absence of this second messenger, cholesterol did not affect PK-C activity. A novel effect of amplified PK-C activation was observed in the presence of both cholesterol and diacylglycerol concentrations within the physiological range of each of these components. 2H NMR results suggest that this phenomenon is due to cholesterol- and diacylglycerol-induced increased propensity of the lipids to adopt nonbilayer phases, effectively destabilizing the bilayer structure. The magnitude of the effect was a function of cholesterol concentration, implying that laterally separated cell membrane domains with distinct cholesterol concentrations have the capacity to differ in their sensitivity to extracellular stimuli.  相似文献   

10.
Human neutrophils have been labeled in 1-O-alkyl-phosphatidylcholine with 3H in both the alkyl chain and the choline moiety. Upon stimulation of these labeled cells with formyl-Met-Leu-Phe, C5a, or phorbol 12-myristate 13-acetate, phospholipase D is activated to produce 1-O-[3H]alkylphosphatidic acid ([3H]alkyl-PA) and [3H]choline. The [3H]alkyl-PA is then dephosphorylated by phosphatidate phosphohydrolase (PPH) to produce 1-O-[3H]alkyldiglyceride ([3H]alkyl-DG). Sphingosine, a sphingoid base known to inhibit protein kinase C (PKC), causes a dose-dependent inhibition of [3H]alkyl-DG formation. This inhibition is accompanied by increased accumulation of [3H]alkyl-PA without alterations in [3H]choline formation. Studies using various other sphingoid bases demonstrate that a long hydrocarbon chain and an amino group are required for the inhibition of DG formation. These results suggest that sphingoid bases inhibit PPH activity without altering phospholipase D activation and that they exhibit a similar structure-activity relationship for both PPH and PKC. K252a, a PKC inhibitor which acts by competing for ATP binding sites, does not inhibit the formation of [3H]alkyl-DG, [3H]alkyl-PA, or [3H]choline at a concentration (3 microM) that completely blocks phorbol 12-myristate 13-acetate-induced protein phosphorylation. Moreover, in neutrophil homogenates, sphingosine but not octylamine, inhibits PPH activity in a dose-dependent manner. Thus sphingosine inhibits PPH activity by a PKC-independent mechanism, raising the possibility that sphingoid bases may play a role in regulating PPH-mediated lipid metabolism in stimulated cells.  相似文献   

11.
K K Hui  J L Yu 《Life sciences》1990,47(4):269-281
The objective of the present study was to investigate the roles of protein kinase A and/or C in agonist-induced beta adrenoceptor activation in intact human lymphocytes. LYmphocytes from healthy subjects were incubated with isoproterenol and phosphodiesterase inhibitor (IBMX, 1.0 mM) after 20 minutes of preincubation with (or without) various compounds possessing protein kinase A and/or C inhibitory activities. These compounds included the relatively selective protein kinase C (PK-C) inhibitors (W-7, calmidazolium, polymyxin B, neomycin, tamoxifen and clomiphene), purified protein inhibitors of protein kinase A (PK-A) (obtained synthetically, or purified from bovine hearts and porcine hearts) and the two compounds (H-7, H-9), which have been found to inhibit both PK-A and PK-C. The results showed that all PK-C inhibitors alone decreased cellular basal cAMP levels while inhibitors of PK-A as well as both H-7 and H-9 increased basal cAMP levels in a dose dependent manner at certain concentrations. All inhibitors studied potentiated isoproterenol-induced cAMP accumulation. The protein kinase A and C inhibitor, H-7, also potentiated PGE1 (but not forskolin)-induced cAMP accumulation. In contrast, the protein kinase C activator, PMA, inhibited isoproterenol- and PGE1- (but not forskolin) induced cAMP accumulation. These data suggest that the potentiating effects of PK-A and/or C inhibitors may be related to the inhibition of PK-A and/or PK-C, both of which have been shown to be involved in beta 2 adrenoceptor desensitization and phosphorylation.  相似文献   

12.
13.
In certain cell systems, including neonatal vascular smooth muscle (VSM) cells, phorbol esters are growth inhibitory. Here we show that 1,2-dioctanoyl-sn-glycerol (DiC8), when added 2 h after alpha-thrombin, reverses by greater than 95% the induction of DNA synthesis in VSM cells by alpha-thrombin. Sphingosine, a naturally occurring lysosphingolipid inhibitor of protein kinase C, and its synthetic analogues N-acetylsphingosine and C11-sphingosine were used to investigate this phenomenon further. Neither phorbol 12-myristate 13-acetate (PMA;200 ng/ml) nor sphingosine (up to 10 microM) alone had any effect upon basal DNA synthesis in VSM cells. Like DiC8, PMA totally blocked the induction of DNA synthesis by alpha-thrombin. This inhibitory effect of PMA was reversed by sphingosine in a dose-dependent manner with complete reversal at 10 microM. Neither N-acetylsphingosine nor C11-sphingosine exhibited any effect on DNA synthesis in VSM cells. The effect of sphingosine and its analogues on the activity of protein kinase C extracted from VSM cells was measured by histone III-S phosphorylation. Protein kinase C activity was inhibited 50% by 300 microM sphingosine, but less than 15% by similar concentrations of N-acetylsphingosine and C11-sphingosine. To assess the effects of sphingosine and analogues on protein kinase C in intact cells, we examined the effect of the lipids on [3H]phorbol dibutyrate binding. Sphingosine (at greater than 5 microM), but not N-acetylsphingosine or C11-sphingosine, blocked [3H]phorbol dibutyrate binding in a dose- and time-dependent fashion. Thus the mechanism of growth inhibition by DiC8 and PMA in neonatal VSM cells appears to be through activation of protein kinase C by these compounds. Sphingosine reverses this growth inhibition through interference with the binding to protein kinase C of phorbol esters or other activators of this enzyme.  相似文献   

14.
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.  相似文献   

15.
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.  相似文献   

16.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

17.
Sphingosine kinase is responsible for the formation of sphingosine-1-phosphate, a sphingolipid mediator with important roles in numerous physiological processes. The sphingosine kinase activity of Tetrahymena pyriformis was recovered predominantly in the particulate fraction and it could be solubilised in 1% beta-octylglucoside. Anion-exchange chromatography resolved the beta-octylglucoside-solubilised sphingosine kinase activity into two peaks corresponding to proteins of Mr 140,000 and 80,000 respectively, as determined by subsequent size exclusion chromatography on Superdex 200. N,N-dimethylsphingosine did not inhibit the sphingosine kinase activity in either fraction, whereas D,L-threo-dihydrosphingosine inhibited sphingosine phosphorylation by the Mr 80,000 kinase but had no effect on the Mr 140,000 kinase activity. The activities also showed different stimulatory responses to Triton X-100 or NaCl. Overall, the results suggest the existence in Tetrahymena of two distinct membrane-associated sphingosine kinases. The kinase activity determined at the different culture stages showed a transient elevation at the mid-logarithmic phase. Further, the sphingosine kinase activity was examined during the synchronous cell division induced by cyclic heat treatments in T. pyriformis. We report for the first time that the sphingosine kinase activity greatly increased at 30 to 45 min after the end of heat treatment prior to the synchronous cell division (75 min), suggesting that the activity changes were associated with the cell cycle and that the up-regulated sphingosine kinase activity would be required for the initiation of the oncoming synchronous cell division in Tetrahymena cells.  相似文献   

18.
D K Murray  M E Hill  D H Nelson 《Life sciences》1990,46(25):1843-1849
The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteroids of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteroid inhibitory effects may be mediated by an action on sphingolipid metabolism.  相似文献   

19.
Synaptosomes from the rat brain were used to study the influence of protein kinase inhibitors on the plasma membrane calcium permeability and calcium-dependent α-latrotoxin (LTX)-induced [14C] GABA release. It was shown that stimulated by depolarization with 4-aminopyridine (4-AP) calcium permeability was inhibited by sphingosine. Calcium permeability evoked by LTX was insensitive to either of following agents; sphingosine, staurosporine, and W-7. Unlike pronounced inhibitory effects of sphingosine, staurosporine, or W-7 on 4-AP-evoked [15C] GABA release, a calcium-dependent secretagogue effect of LTX was not changed by these agents. The mechanism of clacium-dependent LTX-evoked secretagogue effect is discussed.  相似文献   

20.
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号