首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

2.
Physiological activation of protein kinase C (PKC) is believed to occur by redistributing soluble enzyme to the phospholipid environment of membranes. Currently available in vitro methods of measuring PKC activation all involve prior extraction of membrane-associated enzyme and its reconstitution in an artificial phospholipid environment or modification (such as partial trypsinization) of the enzyme itself. Here we report a novel method which, for the first time, allows measurement of active PKC still in its native, membrane-associated state using a specific, physiological substrate. Thus, with this new method PKC activity can be measured while still in an environment that approximates the in vivo situation.  相似文献   

3.
Regulation of membrane-bound PKC in adult cardiac ventricular myocytes   总被引:2,自引:0,他引:2  
Activation of protein kinase C (PKC) is thought to involve translocation to the particulate fraction. The present study demonstrates a membrane-associated, inactive pool of PKC in adult rat ventricular myocytes. Membranes were isolated from stimulated (phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1)) or control myocytes and PKC activity determined in the absence (active PKC) or presence (total PKC) of PMA. An inactive, PMA-responsive, pool of PKC was detected. In intact myocytes, PMA or ET-1 induced a translocation of PKC epsilon from the cytosol into the particulate fraction. In contrast, ET-1 decreased both total and active PKC in the membranes: this decrease was associated with a loss of PKC epsilon immunoreactivity. PMA increased the amount of membrane-associated, inactive PKC. Our results demonstrate the presence of a membrane-associated pool of PKC in cardiac myocytes that is differentially modulated by ET-1 or PMA.  相似文献   

4.
Ethanol and diolein stimulate PKC translocation in astroglial cells   总被引:3,自引:0,他引:3  
S Skwish  W Shain 《Life sciences》1990,47(12):1037-1042
Ethanol exposure stimulates taurine release from astroglial cells. To determine if ethanol mediates this release using protein kinase C (PKC), PKC activity was measured using LRM55 astroglial cells. When ethanol (25-200 mM) or diolein (3 microM) was applied to cells for 30 seconds, PKC activity was observed to decrease in the cytosol and increase in the membrane fraction of the cell while the whole cell activity remained unchanged. The membrane-associated activity increased by almost 100%. When ethanol (100 mM) and diolein (3 microM) were applied simultaneously, membrane-associated activity increased to become 3-5 times greater than when either PKC activator was applied alone. These changes in PKC activity parallel changes in taurine release observed when cells are exposed to ethanol and the PKC activator diolein. Ethanol-stimulated release may be associated with the translocation of PKC activity from the cytosol to the membrane.  相似文献   

5.
Interleukin-2 (IL-2) plays a vital role in the generation and regulation of the immune response, including important aspects of T cell survival. IL-2-mediated survival of T cells appears to be dependent on the activation of a pool of membrane-associated protein kinase C (PKC) that occurs in the absence of detectable translocation of the enzyme from the cytosol to membranes. In this report we investigate the mechanism(s) responsible for this PKC activation after IL-2 stimulation in the cytotoxic T cell line, CTLL-2. Tyrosine kinase activity, activated after IL-2 stimulation, was found not to be linked to the activation of PKC by the cytokine. On the other hand, a pertussis toxin (PTX)-sensitive G protein did appear coupled to PKC activation since PTX effectively blocked IL-2 stimulated PKC activity. Diacylglycerols (DAG), but not inositol 1,3,5-triphosphate (IP3) and intracellular Ca2+, increased after IL-2 stimulation suggesting that DAGs were generated via the phosphatidylcholine-phospholipase C (PC-PLC) or phosphatidylcholine-phospholipase D (PC-PLD) pathways. The increase in DAG by IL-2 was probably necessary for activation of membrane-resident PKC since exogenously applied DAG stimulated this PKC pool in both intact cells and in isolated membranes. IL-2 also increased arachidonic acid (AA) production in CTLL-2 cells, probably via phospholipase A2 (PLA2) since the PLA2 inhibitors oleoyloxyethyl phosphocholine and AACOCF3 (AACF) effectively blocked IL-2 stimulated PKC activation. Exogenous AA also increased PKC activity in intact cells and isolated membranes, suggesting that AA produced by IL-2 receptor stimulation was probably linked to PKC activation. These results suggest that the activation of membrane-resident PKC by IL-2 involves multiple second messengers, including G proteins, DAG and AA.  相似文献   

6.
Stimulation of chief cells with carbachol or cholecystokinin (CCK) results in the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). Although IP3 increases cell calcium concentration, thereby stimulating pepsinogen secretion, the role of DAG and its target, protein kinase C (PKC), is less clear. To examine the relation between the cellular distribution of PKC activity and pepsinogen secretion, we determined PKC activity in cytosolic and membrane fractions from dispersed chief cells from guinea pig stomach. To validate our assay, we studied the actions of the phorbol ester PMA. PMA caused a rapid, dose-dependent, 6-fold increase in pepsinogen secretion and membrane-associated PKC activity. Similarly, dose-response curves for pepsinogen secretion and the increase in membrane-associated PKC activity induced by a membrane-permeant DAG (1-oleoyl-2-acetylglycerol) were superimposable. In contrast, CCK (0.1 nM to 1.0 microM) and carbachol (0.1 microM to 1.0 mM) caused a 4-fold increase in pepsinogen secretion, but did not alter the distribution of PKC activity. These results indicate that in gastric chief cells, PMA- and DAG-induced pepsinogen secretion is accompanied by increased membrane-associated PKC activity. However, the cellular distribution of PKC activity is not altered by CCK or carbachol.  相似文献   

7.
4-Hydroxynonenal (HNE) is a highly reactive aldehyde, produced by cellular lipid peroxidation, able to inhibit proliferation and to induce differentiation in MEL cells at concentrations similar to those detected in several normal tissues. Inducer-mediated differentiation of murine erythroleukemia (MEL) cells is a multiple step process characterized by modulation of several genes as well as by a transient increase in the amount of membrane-associated protein kinase C (PKC) activity. Here we demonstrate that a rapid translocation of PKC activity from cytosol to the membranes occurs during the differentiation induced by HNE. When PKC is completely translocated by phorbol-12-myristate-13-acetate (TPA), the degree of HNE-induced MEL cells differentiation is highly decreased. However, if TPA is washed out from the culture medium before the exposition to the aldehyde, HNE gradually resumes its differentiative ability. The incubation of cells with a selective inhibitor of PKC activity, bisindolylmaleimide GF 109203X, partially prevents the HNE-induced differentiation in MEL cells. In conclusion, our results demonstrate that HNE-induced MEL cell differentiation is preceded by a rapid translocation of PKC activity, and that the inhibition of this phenomenon prevents the onset of terminal differentiation.  相似文献   

8.
Activation and translocation of protein kinase C (PKC) during KCN-induced histotoxic hypoxia was studied in rat brain slices prepared from cerebellum, hippocampus, and cortex. Treatment with 1–10 mM KCN produced a significant increase in PKC translocation and enzyme activity in the particulate fraction of cerebellar and hippocampal slices. In cortical slices, PKC activity was not affected by cyanide treatment. The membrane-associated PKC activity reached a maximum 30 minutes after incubation with KCN and remained elevated up to 60 minutes in both the hippocampus and cerebellum. Pretreatment with MK-801 and APV, specific NMDA receptor antagonists, blocked the cyanide-stimulated translocation in the hippocampus and cerebellum, whereas CNQX, an AMPA/kainate receptor antagonist, did not alter the response. These results demonstrate that cyanide stimulates PKC activation and translocation from the cytosol to membranes in select brain areas and NMDA receptor activation mediates this process.  相似文献   

9.
B cell activation by the lipopeptide trispalmitoyl-cysteinyl-alanyl-glycine (TPP), the biologically active moiety of bacterial lipoprotein, results in protein kinase C (PKC) translocation from the cytosol to the plasma membrane, as well as a significant increase in the activity of membrane-associated PKC that can be observed by in vitro incubation with TPP of partially purified PKC at calcium concentrations in the range of those prevailing in unstimulated B cells. TPP does not affect either the phosphoinositide turnover or the cytosolic-free calcium concentration, but promotes an increase in the intracellular pH that can be blocked by the PKC-inhibitors staurosporine or H-7. Moreover, incubation of B cells with staurosporine suppressed the proliferative response promoted by TPP at a half-maximum effective dose of 16 nM. Activation by TPP of PKC isoenzymes resolved after hydroxylapatite chromatography revealed that the resulting beta I/beta II isoenzyme was more sensitive than the alpha isoenzyme. These results suggest that TPP might mediate B cell activation via interaction with the membrane-associated fraction of PKC.  相似文献   

10.
In an attempt to define the mechanism by which endotoxin induces its biologic activity, LPS was incorporated into phospholipid vesicles (liposomes) and compared with free LPS for ability to stimulate human monocytes. Activation of human monocytes by free LPS caused the translocation of protein kinase C (PKC) from the cytosol to the plasma membranes, the production of both IL-1, alpha and beta, and IL-1 secretion. Activation by LPS presented in multilamellar vesicles (MLV)-LPS caused IL-1 production but not IL-1 secretion. Moreover, MLV-LPS did not induce PKC translocation. MLV themselves did not inhibit monocyte stimulation by LPS, since LPS presented at the surface of lyophilized liposomes behaved like free LPS in cell activation. In contrast, MLV-LPS primed monocytes for subsequent LPS stimulation. When monocytes were activated by LPS in the presence of PKC inhibitors, no plasma membrane-associated PKC or IL-1 secretion was detected, whereas IL-1 production was observed. PKC inhibitors did not affect IL-1 alpha and IL-1 beta production, showing that PKC is not involved in the production of either IL-1. It can be concluded that IL-1 production and secretion are induced independently, and that IL-1 secretion involves PKC.  相似文献   

11.
In agreement with previous data, membrane protein phosphorylation was found to be altered in intact sickle cells (SS) relative to intact normal erythrocytes (AA). Similar changes were observed in their isolated membranes. The involvement of protein kinase C (PKC) in this process was investigated. The membrane PKC content in SS cells, measured by [3H]phorbol ester binding, was about 6-times higher than in AA cells. In addition, the activity of the enzyme, measured by histone phosphorylation was also found to be increased in SS cell membranes but decreased in their cytosol compared to the activity in AA cell membranes and cytosol. The increase in membrane PKC activity was observed mostly in the light fraction of SS cells, fractionated by density gradient, whereas the decrease in cytosolic activity was only observed in the dense fraction. PKC activity, measured in cells from the blood of reticulocyte-rich patients, exhibited an increase in both membranes and cytosol, thus explaining some of the effects observed in the SS cell light fraction, which is enriched in reticulocytes. The increase in PKC activity in the membranes of SS cells is partly explained by their young age but the loss of PKC activity in their cytosol, particularly in that of the dense fraction, seems to be specific to SS erythrocytes. The relative decrease in membrane PKC activity between the dense and the light fractions of SS cells might be related to oxidative inactivation of the enzyme.  相似文献   

12.
Translocation of Ca2+/phospholipid-dependent protein kinase (PKC) activity from cytosolic to membrane fractions was assessed in washed human platelet suspensions. Phorbol myristate acetate (PMA) induced a rapid loss of PKC activity from the cytosolic compartment in stirred platelets, which was not accompanied by measurable increases in membrane-associated activity, but was paralleled by a decrease in total cellular enzyme activity (cytosol plus membrane). When platelet aggregation was prevented by not stirring, (i) cytosolic activity was decreased by PMA, (ii) significant and maintained (1-15 min with PMA) increases in membrane-bound PKC were detected, and (iii) the decline in total enzyme activity was markedly slower. In stirred platelets, total and specific inhibition of PMA-induced aggregation by a fibrinogen-derived peptide (RGDS, i.e. Arg-Gly-Asp-Ser) promoted maximal increases in membrane-associated PKC in the presence of PMA and completely prevented the loss in cellular activity. Thrombin and collagen both induced a decrease in cytosolic PKC and a loss of total activity, but a significant rise in membrane activity was seen only with collagen; ADP had no detectable effect on enzyme distribution. These results demonstrate an agonist-induced redistribution of PKC and indicate that platelet aggregation may play an important role in the proteolysis, and hence persistence, of membrane-associated PKC. This observation has implications for the potency and duration of PKC-mediated responses induced by agonists and exogenous PKC activators.  相似文献   

13.
This paper describes a simple and direct procedure for assaying Ca(2+)-dependent protein kinase C (PKC) activity in membrane fractions isolated from purified murine B lymphocytes (B cells) treated with phorbol 12-myristate 13-acetate (PMA). The results indicate that membrane-bound PKC in B cells, treated with PMA, can be measured directly in the presence of 0.5% Brij 58 by assaying the transfer of 32P from [gamma-32P]ATP to histone type III-S. This method obviates the need for partial purification of the protein kinase by ion-exchange chromatography prior to assaying PKC activity. The properties of membrane-associated PKC activity in B cells have been characterized, and the kinetics of PMA-induced translocation of PKC in cultured murine B cells, the rat glial tumor clone C6, and primary neonatal osteoblastic cells have been defined by this direct assay. The results obtained with B cells and the other cell lines indicate that this direct assay procedure could be useful for studies on the factors controlling PKC translocation in a variety of cultured mammalian cells.  相似文献   

14.
Several lines of evidence indicate that protein kinase C (PKC) is involved in long-term potentiation (LTP) and in certain forms of learning. Recently, we found a learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to membrane-associated PKC in the hippocampus of rats subjected to an inhibitory avoidance task. Here we confirm and extend this observation, describing that a one trial inhibitory avoidance learning was associated with rapid and specific increases in B-50/GAP-43 phosphorylation in vitro and in PKC activity in hippocampal synaptosomal membranes. The increased phosphorylation of B-50/GAP-43 was seen at 30 min (+35% relative to naive or shocked control groups), but not at 10 or 60 min after training. This learning-associated increase in the phosphorylation of B-50/GAP-43 is mainly due to an increase in the activity of PKC. This is based on three different sets of data: 1) PKC activity increased by 24% in hippocampal synaptosomal membranes of rats sacrificed 30 min after training; 2) B-50/GAP-43 immunoblots revealed no changes in the amount of this protein among the different experimental groups; 3) phosphorylation assays, performed in the presence of bovine purified PKC or in the presence of the selective PKC inhibitor CGP 41231, exhibited no differences in B-50/GAP-43 phosphorylation between naive and trained animals. In conclusion, these results support the contention that hippocampal PKC participates in the early neural events of memory formation of an aversively-motivated learning task.  相似文献   

15.
At micromolar concentrations, zinc (Zn) and cadmium, but not other metals, greatly augmented binding of [3H]phorbol dibutyrate ([3H]PDBu) to protein kinase C (PKC) in cell homogenates and intact cells (in the presence of ionophore). Increased binding persisted for several hours. The heavy-metal chelating agent 1,10-phenanthroline completely reversed the increased [3H]PDBu binding in cells pretreated with 65Zn and ionophore and this was associated with a decline of about 20% in cell-associated 65Zn, suggesting that a relatively small pool of intracellular Zn acts on PKC. This may be a membrane-associated pool, since 65Zn readily bound to isolated erythrocyte inside-out membranes. Phenanthroline also partially inhibited binding of [3H]PDBu to PKC in untreated cells and extracts in a Zn-reversible manner. Therefore, cellular Zn appears to regulate the interaction of ligand with PKC. PKC bound to a Zn affinity column and was eluted by metal-chelator, confirming that Zn interacts directly with PKC.  相似文献   

16.
Phosphatidylserine (PS), which is synthesized in mammalian tissues by the exchange between free serine and the nitrogen bases present in membrane glycerophospholipids, is strictly required for protein kinase C (PKC) activity. PKC, as other molecules involved in signal transduction, is present in lipid rafts, considered as a platform for molecular signaling. Membrane microdomains enriched in components of rafts can be isolated on the basis of their insolubility in Triton X-100 at 4 degrees C and their low density in sucrose density gradient. This study demonstrates the existence of serine base exchange enzyme (SBEE) in Triton-insoluble floating fractions containing associated PKC. Using two fractions of detergent-resistant membranes from rat cerebellum, we observed a correlation between the level of SBEE activity and that of membrane-associated PKC. This suggests that SBEE, synthesizing PS in the binding area for PKC, participates to signal transduction. The capability of SBEE to utilize not only serine but also ethanolamine, as free exchanging base, suggests a mechanism for modulating in loco PS concentration.  相似文献   

17.
The regulatory enzyme protein kinase C (PKC) is proposed to be activated on its translocation from the cytosol to the membrane. However, a portion of the native activity is always associated with the membrane fraction. Using a noninvasive procedure to extract this endogenous activity from rat brain membranes, it has been possible to characterize the activity in a partially purified reconstituted system bearing resemblance to the in vivo system. Two subpopulations of membrane-associated PKC were identified and characterized at the level of activation, inhibition, and isozyme immunologic characteristics and chromatographic properties. One peak had properties similar to those of cytosolic PKC, whereas the second population, extracted as protein-lipid complexes, had considerable constitutive activity that could be stimulated further on addition of PKC activators. This latter activity was relatively resistant to staurosporine inhibition and phorbol ester treatment, but it phosphorylated the exogenous PKC substrates, histone 1 and the epidermal growth factor receptor peptide KTRLRR. The constitutive activity was totally dependent on its endogenous associated lipids coextracted by the solubilization procedure. The ratio between these two populations was ontogenetically regulated and modulated by phorbol ester treatment, suggesting that different PKC populations may serve unique functions in the rat brain regulated by the lipid environment. Analyses of the phospholipids extracted in these protein-lipid complexes showed differences in the major classes correlating to age. However, apart from a markedly lower cholesterol content in these complexes, no direct relationship between a specific lipid composition and the amount of constitutive PKC activity was evident.  相似文献   

18.
Rat costochondral cartilage growth plate chondrocytes exhibit cell sex-specific responses to 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT). Mechanistically, E2 and DHT stimulate proliferation and extracellular matrix synthesis in chondrocytes from female and male rats, respectively, by signaling through protein kinase C (PKC) and phospholipase C (PLC). Estrogen receptors (ERα; ERβ) and androgen receptors (ARs) are present in both male and female cells, but it is not known whether they interact to elicit sex-specific signaling. We used specific agonists and antagonists of these receptors to examine the relative contributions of ERs and ARs in membrane-mediated E2 signaling in female chondrocytes and DHT signaling in male chondrocytes. PKC activity in female chondrocytes was stimulated by agonists of ERα and ERβ and required intact caveolae; PKC activity was inhibited by the E2 enantiomer and by an inhibitor of ERβ. Western blots of cell lysates co-immunoprecipitated for ERα suggested the formation of a complex containing both ERα and ERß with E2 treatment. DHT and DHT agonists activated PKC in male cells, while AR inhibition blocked the stimulatory effect of DHT on PKC. Inhibition of ERα and ERβ also blocked PKC activation by DHT. Western blots of whole-cell lysates, plasma membranes, and caveolae indicated the translocation of AR to the plasma membrane and specifically to caveolae with DHT treatment. These results suggest that E2 and DHT promote chondrocyte differentiation via the ability of ARs and ERs to form a complex. The results also indicate that intact caveolae and palmitoylation of the membrane receptor(s) or membrane receptor complex containing ERα and ERβ is required for E2 and DHT membrane-associated PKC activity in costochondral cartilage cells.  相似文献   

19.
The viral src protein kinase, pp60v-src, is a powerful intracellular mitogen which can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how pp60v-src induces proliferation, we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile v-src protein in quiescent, serum-starved tsRSV-transformed NRK cells. The reactivation of pp60v-src, in the presence of exogenous growth factors, triggered a rapid biphasic surge of membrane-associated protein kinase C (PKC) activity. Unlike TPA-stimulated PKC activity, the pp60v-src-induced increase in PKC was readily extracted from membranes by EGTA. The down-regulation of PKC activity in these quiescent cells by prolonged exposure to TPA strongly inhibited the ability of the reactivated v-src protein to stimulate DNA replication in serum-deficient medium, suggesting that PKC plays a role in the initial signal by which the viral enzyme induces the G0 to G1 transition in NRK cells.  相似文献   

20.
Quantitative estimation of cytosolic Ca2+- and phospholipid-dependent protein kinase (PKC) activity was performed by polyacrylamide gel electrophoresis under nondenaturating conditions (PAGE). With this method less than 50 micrograms of cytosol protein can be accurately quantitated for PKC activity. The amount of cytosolic PKC activity recovered after PAGE was comparable to the amount obtained by DEAE-cellulose chromatography. Homogenization of GH3 cells in the presence of 2 mM EGTA/EDTA revealed that 80% of the total cellular PKC activity resided in the cytosol. However, omission of the ion chelator during cell disruption followed by subcellular fractionation and extraction of subcellular fractions by EDTA/EGTA showed that 80% of the total PKC was found in the lysosomal-mitochondrial and microsomal extracts. Detailed analysis of PKC activities demonstrated that cytosolic PKC was identical with the PKC solubilized by EDTA/EGTA from subcellular fractions. In conclusion, GH3 cells appear to contain one species of PKC with an apparent molecular weight of 90,000 which seems to be associated with membranes via a calcium-dependent mechanism (or mechanisms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号