首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Niche-based and neutral models of community structure posit distinct mechanisms underlying patterns in community structure; correlation between species’ distributions and habitat factors points to niche assembly while spatial pattern independent of habitat suggests neutral assembly via dispersal limitation. The challenge is to disentangle the relative contributions when both processes are operating, and to determine the scales at which each is important. We sampled shoreline plant communities on an island in Lake Michigan, varying the extent and the grain of sampling, and used both distance-based correlation methods and variance partitioning to quantify the proportion of the variation in plant species composition that was attributable to habitat factors and to spatial configuration independent of habitat. Our results were highly scale dependent. We found no distance decay of plant community similarity at the island scale (1−33 km). All of the explained variation (32%) in species composition among samples at this scale was attributed to habitat factors. However, at a site intensively sampled at a smaller scale (5−1,200 m), similarity of species composition did decay with distance. Using a coarse sampling grain (transects), habitat factors explained 40% of the variation, but the purely spatial component explained a comparable 22%. Analyzing plots within transects revealed variation in species composition that was still jointly determined by habitat and spatial factors (18 and 11% of the variance, respectively). For both grain sizes, most of the habitat component was spatially structured, reflecting an abrupt alongshore transition from sandy dunes to cobble beach. Space per se explained more variation in species composition at a second site where the habitat transition was more gradual; here, habitat acted as a less selective filter, allowing the signal of dispersal limitation to be detected more readily. We conclude that both adaptation to specific habitat factors and habitat-independent spatial position indicative of dispersal limitation determine plant species composition in this system. Our results support the prediction that dispersal limitation—a potentially, but not necessarily, neutral driver—is relatively more important at smaller scales.  相似文献   

3.
Local numbers of ground beetle species of heathland appeared to be significantly associated with size of total area, whereas such relationships were not found for the total number of ground beetle species and eurytopic ground beetle species. Presence of species with low chances of immigration was highly associated with area. This is accordance with the area per se hypothesis for islands as far as extinction rates are concerned. The habitat diversity hypothesis and the random sampling hypothesis are of less importance for explaining this phenomenon. The importance of dispersal for presence and survival in fragmented habitats could be demonstrated. This result supports the founding hypothesis, under which founding of new populations is considered the main effect of dispersal. The frequency of heathland species with low powers of dispersal in habitats smaller than 10 ha was 76% lower on average than in areas larger than 100 ha. For heathland species with high powers of dispersal this frequency was only 22% lower on average. The period of isolation of the habitats studied, 26–113 years, appeared to be too long to persist for many populations of heathland species with low powers of dispersal.  相似文献   

4.
The fragmentation of landscapes has an important impact on the conservation of biodiversity, and the genetic diversity is an important factor for a populations viability, influenced by the landscape structure. However, different species with differing ecological demands react rather different on the same landscape pattern. To address this feature, we studied three skipper species with differing habitat requirements (Lulworth Skipper Thymelicus acteon: a habitat specialist with low dispersal ability, Small Skipper Thymelicus sylvestris: a habitat generalist with low dispersal ability, Essex Skipper Thymelicus lineola: a habitat generalist with higher dispersal ability). We analysed 18 allozyme loci for 1,063 individuals in our western German study region with adjoining areas in Luxembourg and north-eastern France. The genetic diversity of all three species were intermediate in comparison with other butterfly species. The F ST was relatively high for T. acteon (5.1%), low for T. sylvestris (1.6%) and not significant for T. lineola. Isolation by distance analyses revealed a significant correlation for T. sylvestris explaining 20.3% of its differentiation, but no such structure was found for the two other species. Most likely, the high dispersal ability of T. lineola in comparison with T. sylvestris leads to a more or less panmictic structure and hence impedes isolation by distance. On the other hand, the isolation of the populations of T. acteon seems to be so strict that the populations develop independently. Although no general genetic impoverishing was observed for the endangered T. acteon, small populations had significantly lower genetic diversities than big populations, and therefore the high degree of isolation among populations might threaten its local and regional survival.  相似文献   

5.
Some species cope with, and survive in, urban areas better than others.From a conservation viewpoint it is important to understand why some species arerare or are excluded in the urban landscape, in order that we might take actionto conserve and restore species. Two ecological factors that might explain thedistribution and abundance of butterfly species in the urban landscape aredispersal ability and the availability of suitable habitat. The influence ofthese factors was assessed by examining the distribution and genetic structureof four grassland butterfly species in the West Midlands conurbation, UK. Thefour species differ in their distribution and abundance, mobility and habitatspecificity. No significant fit to the isolation-by-distance model was found forany of the study species at this spatial scale. MeanF ST values revealed a non-significant level ofpopulation structuring for two species, Pieris napi (L.)and Maniola jurtina (L.), but moderate and significantpopulation differentiation for Pyronia tithonus (L.) andCoenonympha pamphilus (L.). Results suggest that thesespecies are limited more by the availability of suitable habitat than by theirability to move among habitat patches. Conservation strategies for thesegrassland species should initially focus on the creation and appropriatemanagement of suitable habitat. More sedentary species that have already beenexcluded from the conurbation may require a more complex strategy for theirsuccessful restoration.  相似文献   

6.
Redhorse, Moxostoma spp., are considered to be negatively affected by dams although this assertion is untested for Canadian populations. One hundred and fifty-one sites in the Grand River watershed were sampled to identify factors influencing the distribution of redhorse species. Individual species of redhorse were captured from 3 to 32% of sites. The most widespread species were golden redhorse, M. erythrurum (30%) and greater redhorse, M. valenciennesi (32%), while river redhorse, M. carinatum, was only found along the lower Grand River. Redhorse were absent from the highly fragmented Speed River sub-watershed and upper reaches of the Conestogo River and the Grand River. Redhorse species richness was positively correlated to river fragment size and upstream drainage area. Generalized additive models (GAMs) were applied to evaluate the influence of river fragment length, connectivity and habitat on species distribution. Principal component analysis reduced habitat data to three axes representing: channel structure, substrate, and pool, riffle and run habitats (PC1); gradient and drainage area (PC2); and cover (PC3). GAMs indicate that PC2 was important for predicting black redhorse and greater redhorse site occupancy and PC1 was important for golden redhorse. River fragment length was important for predicting site occupancy for shorthead redhorse, but not other species.  相似文献   

7.
The species richness of communities should largely depend on habitat variability and/or on habitat state. We evaluated the ability of habitat variability and habitat state to predict the diversity of juvenile neotropical fish communities in creeks of a river floodplain. The young-fish fauna consisted of 73 taxa, and samples were well distributed over a wide range of relevant temporal and spatial habitat variability. We were unable to demonstrate clear patterns of richness in relation to temporal and spatial habitat variability (if habitat state variables were not included), regardless of the temporal variability scale, the grouping of sites (up- and downstream sites differed in temporal variability patterns), taxonomic units or life stages considered. Using stepwise multiple regression, 36% of the variance in species richness was explained for all data, and at best 47% was explained for all taxonomic units at upstream sites using temporal and spatial habitat variability and habitat state (bank length, mean width, mean water level before fishing and/or water turbidity). Using Monte Carlo simulations, we blindly predicted 31% (all data) and at best 37% (all upstream taxa) of the observed variance in species richness from these model types. This limited precision is probably because rare species produced most of the richness patterns in our creeks. The prediction of these rare species is generally difficult for various reasons, and may be a problem in many ecosystem types. Received: 6 July 1998 / Accepted: 16 November 1998  相似文献   

8.
Island biogeography theory, created initially to study diversity patterns on islands, is often applied to habitat fragments. A key but largely untested assumption of this application of theory is that landscape matrix species composition is non‐overlapping with that of the islands. We tested this assumption in successional old field patches in a closely mowed matrix, and because our patches are appropriately viewed as sets of contiguous habitat units we studied patterns of species richness per unit area. Previous studies at our site did not find that diversity patterns on patch ‘islands’ conformed to predictions of island biogeography theory. Our results indicate that when matrix species are removed from the patch samples, diversity patterns conform better to theory. We suggest that classical island theory remains an appropriate tool to study diversity patterns in fragmented habitats, but that allowances should be made for spill‐over colonization of ‘islands’ from the ‘sea’.  相似文献   

9.
由于长期的捕猎及森林破坏,许多西黑冠长臂猿群体生活于零散的小型生境片段中。在云南南部芭蕉河地区,利用55个样方测量了西黑冠长臂猿一个隔离小种群栖息地植被,共记录乔木28科57属85种,其中壳斗科、樟科及省沽油科占优势地位,植被组成与结构在不同的森林片段、地形及干扰程度区域中差异显著。利用瞬时扫描法在两个年周期中的系统观察发现,与连续森林中的群体相比,芭蕉河长臂猿更加依赖对桂北木姜子、大果山香圆等优势乔木树种的取食,在乔木果实缺乏的季节,其并未取食更多叶类,而是进入次生植被搜寻藤本果实。可能受人为干扰及植被结构的影响,长臂猿未取食无花果类植物。原始林中植被结构并未对长臂猿生境利用造成明显影响,但其在不同森林片段间表现出显著的选择性。通过对芭蕉河、大寨子、平河及新平茶马古道四地的比较发现,西黑冠长臂猿栖息地植被特征存在较大的地区差异,其生态与行为可能因此表现出较强的适应性,但这需要更大时空尺度的研究予以验证。  相似文献   

10.
In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.  相似文献   

11.
The habitat loss and fragmentation due to agricultural land-conversion affected the steppe throughout its range. In Ukraine, 95% of steppe was destroyed in the last two centuries. Remaining populations are confined to few refuges, like nature reserves, loess ravines, and kurgans (small burial mounds), the latter being often subject to destruction by archeological excavations.Stipa capillata L. is a typical grass species of Eurasian steppes and extrazonal dry grasslands, that was previously used as a model species in studies on steppe ecology. The aim of our research was to assess genetic diversity of S. capillata populations within different types of steppe refuges (loess ravines, biosphere reserve, kurgan) and to evaluate the value of the latter group for the preservation of genetic diversity in the study species.We assessed genetic diversity of 266 individuals from 15 populations (nine from kurgans, three from loess ravines and three from Askania-Nova Biosphere Reserve) with eight Universal Rice Primers (URPs).Studied populations showed high intra-population variability (I: 0.262–0.419, PPB: 52.08–82.64%). Populations from kurgans showed higher genetic differentiation (ΦST = 0.247) than those from loess ravines (ΦST = 0.120) and the biosphere reserve (ΦST = 0.142). Although the diversity metrics were to a small extent lower for populations from kurgans than from larger refugia we conclude that all studied populations of the species still preserve high genetic variability and are valuable for protection. To what extent this pattern holds true under continuous fragmentation in the future must be carefully monitored.  相似文献   

12.
13.
We synthesized information on temporal and spatial patterns of salt marsh habitat use by nekton in order to infer the importance of five main types of marsh function: reproduction, foraging, refuge from predation, refuge from stressful environmental conditions and environmental enhancement of physiology. We then extended the concept that intertidal gradients regulate habitat use patterns of nekton to a more universal concept that applies to all salt marsh habitats. We contend that all marsh habitats are linked to each other and to adjacent estuarine habitats along a depth gradient that mediates gradients in abiotic and biotic conditions. Tidal, diel and seasonal shifts in the magnitude and direction of these gradients result in gradients in tidal, diel and seasonal variation in biotic and abiotic conditions within the salt marsh. Collectively these gradients form the `marsh gradient'. We propose that patterns of marsh use and ecological function for nekton result primarily from physiological and behavioral responses to this marsh gradient. A comparison of habitat use patterns in the context of the marsh gradient is an important – and underutilized – method to study marsh function and essential fish habitat. We note that our limited insight into the function of the marsh habitat results from a significant lack of information on the occurrence and causes of tidal, diel and ontogenetic marsh use patterns by nekton; this is particularly relevant with respect to data on the variation in environmental conditions along marsh gradients over tidal, diel and seasonal cycles and on how environmental variation on these scales influences nekton behavior, growth and survival.  相似文献   

14.
Understanding variations in animal movement and habitat selection behaviour over fine spatial and temporal scales remains a particularly challenging goal in ecology and conservation. Here we document for the first time the diel variations in movement patterns and habitat use by wild-ranging Cabrera voles in fragmented Mediterranean farmland, based on radiotracking data (2006–2008) of 25 adult individuals occupying stable home-ranges in vegetation mosaics dominated by wet grasses and shrubs. Results indicated that the proportion of time animals spent moving, the distance moved, and the selection strength of main vegetation types were closely linked behavioural traits, which varied considerably across different periods of the 24-h cycle. In general, voles moved more frequently and over larger distances during daytime (between 06 h15–22 h00), which was when wet grasses were also used more intensively. These patterns were generally consistent across seasons, though during the dry season there was some tendency for a decrease in movement activity during the hottest hours of the day (between 10 h15–14 h00), with peaks around crepuscular hours (06 h15–10 h00 and 18 h15–22 h00). Overall, our study provides evidence that Cabrera voles may show notable shifts in habitat use and movement patterns on a finer scale than previously considered. This supports the idea that knowledge of the diel variations in species movement-habitat relationships should strongly contribute to improving local habitat management, as well as effective sampling and monitoring programs targeting the species.  相似文献   

15.
Temporal dynamics of insect communities in terrestrial habitat fragments have been rarely studied. Here it was tested whether immigration, extinction, and turnover of butterfly species change with area and isolation of 31 calcareous grasslands. The area ranged from 0.03 to 5.14 ha, the isolation index from 2,100 to 86,000 (edge-to-edge distance 55–1,894 m). In both study years (1996, 2000), the total number of individuals (16,466, 15,101) and species (60, 54) sampled across all sites were similar and number of species increased with area in both years indicating an equilibrium. Rates of extinction (38% for habitat specialists vs. 20% for generalists) and turnover (51% vs. 35%) were higher, and rates of immigration (11% vs. 30%) were lower for habitat specialists than for generalists. Extinction and turnover rates decreased with increasing fragment size for both specialist (n =25 species) and generalist (n =36) butterflies, but specialists showed a significantly steeper decrease with increasing fragment size than generalists. Immigration rates increased with area. As a result, species number of habitat specialists declined in small habitats but not in large habitats between 1996 and 2000. No significant impact of habitat isolation on the butterfly community was found. The data suggest that large habitat fragments are of special importance for the conservation of the specialized, most endangered butterfly species. Habitat isolation appears to be less important, as butterflies can cope with the habitat mosaic in our study region.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

16.
17.
Many species of vertebrates require multiple habitats to obtain different resources at different stages of their life-cycles. Use of habitat mosaics takes place on a variety of spatial and temporal scales, from a daily requirement for adjacent habitats to seasonal use of geographically separated environments. Mosaics of habitats are also required in some species to allow ontogenetic habitat shifts, while in others each sex may have specific requirements that are met by different habitats. The extent and nature of animal movements are key (but generally poorly known) factors affecting the vulnerability of species to landscape change. The requirement by many species for multiple habitats suggests that their conservation will be most effective in a mosaic environment and that protection of certain high profile habitats alone, such as rainforest, will be insufficient to achieve conservation goals. Management regimes that result in homogenization of habitats should be avoided. Priority should be given to research that identifies the extent to which species can locate habitat mosaics, at different spatial scales and arrangements, in modified environments.  相似文献   

18.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

19.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

20.
Urophysa henryi (Oliv.) Ulbr., endemic to China with small populations, is known as a medicinal plant. In this study, ISSR markers were used to assess the genetic diversity and population structure throughout its entire distribution areas. Twelve primers revealed high genetic diversity at the species level (PPB = 95.6%; H = 0.3441; I = 0.5111), as well as high level of genetic differentiation (FST = 0.659, p < 0.001; GST = 0.677) and restricted gene flow (Nm = 0.239) among populations. According to the UPGMA and PCoA analysis, the 9 populations were clustered into three main groups, which were roughly in accordance with their geographical regions. In addition, a significant correlation between the genetic difference and geographic distances among populations was detected from the IBD analysis (r = 0.516, p = 0.003). These results indicated that the habitat heterogeneity and physical barriers play important roles in the modern distribution pattern and population divergence of U. henryi. However, human activities have posed serious threat to its living environment and continued survival. It is necessary to adopt some measures to restrict anthropogenic disturbances and preserve the existing populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号