首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Vester B  Wengel J 《Biochemistry》2004,43(42):13233-13241
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.  相似文献   

3.
Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3′-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3′-exonucleolytic degradation.  相似文献   

4.
Hanakahi LA  Bu Z  Maizels N 《Biochemistry》2000,39(50):15493-15499
We report that the abundant nucleolar protein nucleolin accelerates nucleic acid annealing. Nucleolin accelerates annealing of complementary oligonucleotides and of oligonucleotides that contain a limited number of mismatches. The annealing activity of nucleolin can be localized to a C-terminal region consisting of two RNA binding domains (RBD3 and RBD4) and the RGG(9) domain (RBD3-RBD4-RGG(9)). This same region mediates self-association of nucleolin. The RGG(9) domain of nucleolin, believed to mediate interactions between nucleolin and several ribosomal proteins, is neither sufficient for self-association, as determined by small-angle X-ray scattering, nor can it independently accelerate annealing. Acceleration of nucleic acid annealing by nucleolin is likely to depend on self-association of nucleolin molecules bound to nucleic acid.  相似文献   

5.
Point mutations associated with isoniazid resistance in Mycobacterium tuberculosis (MTB) have been analyzed in codon 315 of the katG gene by conventional polymerase chain reaction (PCR) using primers containing locked nucleic acid (LNA) modified nucleotides. Purity and structure of primers containing 5 LNA monomers of 17 nucleotides in length were characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and a 17-mer duplex formed by two complementary oligonucleotides was characterized by the method of thermal denaturation. The duplex containing five LNA monomers per each strand was characterized by a higher melting temperature than it was expected using extrapolation of theoretical calculation for nucleotide modification of one strand of the duplex. Detection of any of six possible mutations in katG codon 315 (i.e. discrimination between sensitive and resistant MTB) requires just one PCR employing a set of two primers with one LNA-modified primer; this is an important advantage of oligonucleotides containing LNA over unmodified nucleotides: employment of multiplex PCR would require up to 12 primers. Problems of control of oligonucleotide modification by LNA monomers are discussed.  相似文献   

6.
A series of cationic nucleic acid carriers was evaluated for their ability to deliver pLuc plasmid DNA or a 2'-O-methyl-oligoribonucleoside phosphorothioate, ON-705. Oligonucleotide delivery and its antisense function were assayed by a recently developed assay based on alternative splicing of modified luciferase pre-mRNA (Kang et al., 1998). This assay scores only the nuclear and sequence-specific antisense activity of the oligonucleotides. The results show that the efficiencies of delivery of plasmid DNA and oligonucleotides by the tested carriers, with the exception of Exgene and Lipofectamine, differed markedly. The efficiency of the delivery of ON-705 oligonucleotide was reduced by 70%-90% for all carriers, except Effectene, in culture media containing 8% fetal bovine serum. Interestingly, the efficiency of delivery of the ON-705-Effectene complex increased with serum concentrations of up to 30%.  相似文献   

7.
Genotyping of single nucleotide polymorphisms (SNPs) in large populations presents a great challenge, especially if the SNPs are embedded in GC-rich regions, such as the codon 112 SNP in the human apolipoprotein E (apoE). In the present study, we have used immobilized locked nucleic acid (LNA) capture probes combined with LNA-enhancer oligonucleotides to obtain efficient and specific interrogation of SNPs in the apoE codons 112 and 158, respectively. The results demonstrate the usefulness of LNA oligonucleotide capture probes combined with LNA enhancers in mismatch discrimination. The assay was applied to a panel of patient samples with simultaneous genotyping of the patients by DNA sequencing. The apoE genotyping assays for the codons 112 and 158 SNPs resulted in unambiguous results for all patient samples, concurring with those obtained by DNA sequencing.  相似文献   

8.
Owczarzy R  You Y  Groth CL  Tataurov AV 《Biochemistry》2011,50(43):9352-9367
Locked nucleic acids (LNA; symbols of bases, +A, +C, +G, and +T) are introduced into chemically synthesized oligonucleotides to increase duplex stability and specificity. To understand these effects, we have determined thermodynamic parameters of consecutive LNA nucleotides. We present guidelines for the design of LNA oligonucleotides and introduce free online software that predicts the stability of any LNA duplex oligomer. Thermodynamic analysis shows that the single strand-duplex transition is characterized by a favorable enthalpic change and by an unfavorable loss of entropy. A single LNA modification confines the local conformation of nucleotides, causing a smaller, less unfavorable entropic loss when the single strand is restricted to the rigid duplex structure. Additional LNAs adjacent to the initial modification appear to enhance stacking and H-bonding interactions because they increase the enthalpic contributions to duplex stabilization. New nearest-neighbor parameters correctly forecast the positive and negative effects of LNAs on mismatch discrimination. Specificity is enhanced in a majority of sequences and is dependent on mismatch type and adjacent base pairs; the largest discriminatory boost occurs for the central +C·C mismatch within the +T+C+C sequence and the +A·G mismatch within the +T+A+G sequence. LNAs do not affect specificity in some sequences and even impair it for many +G·T and +C·A mismatches. The level of mismatch discrimination decreases the most for the central +G·T mismatch within the +G+G+C sequence and the +C·A mismatch within the +G+C+G sequence. We hypothesize that these discrimination changes are not unique features of LNAs but originate from the shift of the duplex conformation from B-form to A-form.  相似文献   

9.
A highly sensitive method to detect traces of aldehyde-containing apurinic/apyrimidinic (AP) sites in nucleic acids has been developed. Based on this method, a novel approach to detect DNA base mismatches recognized by the mismatch repair glycosylase MutY is demonstrated. Open chain aldehydes generated in nucleic acids due to spontaneous depurination, DNA damage or base excision of mismatched adenine by MutY are covalently trapped by a new linker molecule [fluorescent aldehyde-reactive probe (FARP), a fluorescein-conjugated hydroxylamine derivative]. DNA containing AP sites is FARP-trapped, biotinylated and immobilized onto neutravidin-coated microplates. The number of FARP-trapped aldehydes is then determined via chemiluminescence using a cooled ICCD camera. AP sites induced in plasmid or genomic calf thymus DNA via mild depurination or by simple incubation at physiological conditions (pH 7, 37 degreesC) presented a linear increase in chemiluminescence signal with time. The procedure developed, from a starting DNA material of approximately 100 ng, allows detection of attomole level (10(-18) mol) AP sites, or 1 AP site/2 x 10(7) bases, and extends by 1-2 orders of magnitude the current limit in AP site detection. In order to detect MutY-recognized mismatches, nucleic acids are first treated with 5 mM hydroxylamine to remove traces of spontaneous aldehydes. Following MutY treatment and FARP-labeling, oligonucleotides engineered to have a centrally located A/G mismatch demonstrate a strong chemiluminescence signal. Similarly, single-stranded M13 DNA that forms mismatches via self-complementation (average of 3 mismatches over 7429 bases) and treated with MutY yields a signal approximately 100-fold above background. No signal was detected when DNA without mismatches was used. The current development allows sensitive, non-isotopic, high throughput screening of diverse nucleic acids for AP sites and mismatches in a microplate-based format.  相似文献   

10.
Synthesis of the novel alpha-L-ribofuranosyl phosphoramidite derivative was accomplished via the alpha-L-ribofuranosyl thymine nucleoside. Amidite was used in automated syntheses of chimeric oligonucleotides composed of mixtures of the novel alpha-L-RNA nucleotide monomer ((alphaL)T, alpha-L-ribo configured RNA), and DNA, LNA (T(L), locked nucleic acid) or alpha-L-LNA ((alphaL)T(L), alpha-L-ribo configured locked nucleic acid) nucleotide monomers. For alpha-L-RNA/DNA and alpha-L-RNA/alpha-L-LNA chimeras, RNA-selective hybridization was obtained, for alpha-L-RNA/alpha-L-LNA chimera we found increased binding affinity compared to the corresponding DNA:RNA reference duplex. In addition, alpha-L-RNA/alpha-L-LNA chimera displayed significant stabilization towards 3'-exonucleolytic degradation. These results indicate that alpha-L-RNA/alpha-L-LNA chimeras deserve further evaluation as antisense molecules.  相似文献   

11.
The success of oligonucleotide ligation assays in probing specific sequences of DNA arises in large part from high enzymatic selectivity against base mismatches at the ligation junction. We describe here a study of the effect of mismatches on a new non-enzymatic, reagent-free method for ligation of oligonucleotides. In this approach, two oligonucleotides bound at adjacent sites on a complementary strand undergo autoligation by displacement of a 5'-end iodide with a 3'-phosphorothioate group. The data show that this ligation proceeds somewhat more slowly than ligation by T4 ligase, but with substantial discrimination against single base mismatches both at either side of the junction and a few nucleotides away within one of the oligonucleotide binding sites. Selectivities of >100-fold against a single mismatch are observed in the latter case. Experiments at varied concentrations and temperatures are carried out both with the autoligation of two adjacent linear oligonucleotides and with intramolecular autoligation to yield circular 'padlock' DNAs. Application of optimized conditions to discrim-ination of an H- ras codon 12 point mutation is demonstrated with a single-stranded short DNA target.  相似文献   

12.
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular modeling shows that the phenyl or the naphthyl ring stacks with the nucleobases in the TFO, while the phenanthroimidazol moiety stacks with the base pairs of the dsDNA. DNA-strands containing the intercalator X show higher thermal triplex stability than DNA-strands containing the intercalator Y. The difference can be explained by a lower degree of planarity of the intercalator in the case of naphthyl. It was also observed that triplex stability was considerably reduced when the intercalators X or Y was replaced by 2-(naphthlen-1-yl)imidazole. This confirms intercalation as the important factor for triplex stabilization and it rules out an alternative complexation of protonated imidazole with two phosphate groups. The intercalating nucleic acid monomers X and Y were obtained via a condensation reaction of 9,10-phenanthrenequinone (4) with (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)benzaldehyde (3a) or (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)-1-naphthaldehyde (3b), respectively, in the presence of acetic acid and ammonium acetate. The required monomers for DNA synthesis using amidite chemistry were obtained by standard deprotection of the hydroxy groups followed by 4,4'-dimethoxytritylation and phosphitylation.  相似文献   

13.
A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled "stacking oligonucleotide," and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the "capture probe" and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3'-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivatized glass. "Operating parameters" examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration: 1. Optimal mismatch discrimination with 9-mer probes occurs at 45 degrees C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45 degrees C. 2. At 25 degrees C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch. 3. The presence of a phosphate group on the 5'-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied. These results provide a motivation for continued development of the stacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996) Proc. Natl. Acad. Sci. USA 93, 4913-4918; Parinov et al. (1996) Nucleic Acids Res. 24, 2998-3004).  相似文献   

14.
Two G-quadruplex forming sequences, 5'-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming oligonucleotides (QFOs) and the effect of LNA monomers in the context of biologically active QFOs. In addition, recent literature reports and our own studies on the gel retardation of the phosphodiester analogue of T30177 led to the conclusion that this sequence forms a parallel, dimeric G-quadruplex. Introduction of the 5'-phosphate inhibits dimerisation of this G-quadruplex as a result of negative charge-charge repulsion. Contrary to that, we found that attachment of the 5'-O-DMT-group produced a more active 17-mer sequence that showed signs of aggregation-forming multimeric G-quadruplex species in solution. Many of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed.  相似文献   

15.
We previously reported the Bcl-2/Bcl-xL-bispecific activity of the 2'-O-(2-methoxy)ethyl (2'-MOE)-modified gapmer antisense oligonucleotide 4625. This oligonucleotide has 100% complementarity to Bcl-2 and three mismatches to Bcl-xL. In the present study, the isosequential locked nucleic acid (LNA)-modified oligonucleotide 5005 was generated, and its ability to further improve the downregulation of the two antiapoptotic targets in tumor cells was examined. We demonstrate that compared with 4625, 5005 more effectively decreased the expression of the mismatching Bcl-xL target gene in MDA-MB-231 breast and H125 lung cancer cells. In both cell lines, antisense activity caused decreased cell viability by induction of apoptosis. Moreover, in combination with various anticancer agents, 5005 reduced tumor cell viability more effectively than 4625. We describe for the first time the functional comparison of isosequential Bcl-2/Bcl-xL-bispecific 2'-MOE and LNA-modified antisense oligonucleotides and report that the LNA analog more effectively downregulated the two apoptosis inhibitors overexpressed in human tumors. Our data underscore the ability of LNA modifications to enhance the efficacy and favorably modulate the target specificity of antisense oligonucleotides.  相似文献   

16.
To understand the parameters required for designing potent and specific antisense C-5 propynyl-pyrimidine-2'-deoxyphosphorothioate-modified oligonucleotides (C-5 propyne ONs), we have utilized a HeLa line that stably expresses luciferase under tight control of a tetracycline-responsive promoter. Using this sensitive and regulatable cell-based system we have identified five distinct antisense ONs targeting luciferase and have investigated the role that ON length, target mismatches, compound stability and intracellular RNA levels play in affecting antisense potency. We demonstrate that C-5 propyne ONs as short as 11 bases retained 66% of the potency demonstrated by the parent 15 base compound, that a one base internal mismatch between the antisense ON and the luciferase target reduced the potency of the antisense ON by 43% and two or more mismatches completely inactivated the antisense ON and that C-5 propyne ONs have a biologically active half-life in tissue culture of 35 h. In addition, by regulating the intracellular levels of the luciferase mRNA over 20-fold, we show that the potency of C-5 propyne ONs is unaffected by changes in the expression level of the target RNA. These data suggest that low and high copy messages can be targeted with equivalent potency using C-5 propyne ONs.  相似文献   

17.
Electrochemical detection of nucleic base mismatches was attempted successfully with ferrocenyl naphthalene diimide (FND) in a model system with 20-meric double-stranded oligonucleotides with or without a mismatch(es). Thus, dA(20) or a 20-meric sequence of the lac Z gene was immobilized on a gold electrode and complementary oligonucleotides with different numbers of mismatches were allowed to hybridize in the presence of FND to give rise to an electrochemical signal. The signal intensity varied depending on the number of unpaired bases on the DNA duplex. From experiments with a quartz crystal microbalance, eight molecules of FND were found to bind to the 20-meric double-stranded oligos and this number decreased as the number of mismatches increased. These findings were further supported by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. This novel method will be useful for the analysis of single-nucleotide polymorphisms present on human genes.  相似文献   

18.

Background

Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping.

Results

We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 species used in the assay, 28 species and 50 different genes were clearly identified using this method.

Conclusion

As a novel genomic DNA amplification, the use of locked nucleic acid pentamers as universal primer pairs in conjunction with suspension array genotyping, allows for the identification of multiple distinct genes or species with a single amplification procedure. This demonstrates that locked nucleic acid pentamer-based PCR can be utilized extensively in pathogen identification.  相似文献   

19.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC(50) values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.  相似文献   

20.
The in vivo potency of antisense oligonucleotides (ASO) has been significantly increased by reducing their length to 8–15 nucleotides and by the incorporation of high affinity RNA binders such as 2′, 4′-bridged nucleic acids (also known as locked nucleic acid or LNA, and 2′,4′-constrained ethyl [cET]). We now report the development of a novel ASO design in which such short ASO monomers to one or more targets are co-synthesized as homo- or heterodimers or multimers via phosphodiester linkers that are stable in plasma, but cleaved inside cells, releasing the active ASO monomers. Compared to current ASOs, these multimers and multi-targeting oligonucleotides (MTOs) provide increased plasma protein binding and biodistribution to liver, and increased in vivo efficacy against single or multiple targets with a single construct. In vivo, MTOs synthesized in both RNase H-activating and steric-blocking oligonucleotide designs provide ≈4–5-fold increased potency and ≈2-fold increased efficacy, suggesting broad therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号