首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal blood pressure (BP) fluctuations are superimposed by a 24-h rhythm with usually lower levels during the night and higher levels during the day. In contrast to other rhythmic bioparameters, the diurnal BP rhythm is largely dependent on activity and sleep rather than on clock time. This has been demonstrated by the BP characteristics after shifted sleeping and working phases, during transition from sleep to wakefulness, and by the influence of sleep and activities on the 24-h BP curve during normal daily routines. Whereas the circadian rhythm of BP is predominantly governed by external time triggers, endogenous rhythmicity can only be detected by time microscopic analysis or in conditions where effects of external time triggers are almost excluded.  相似文献   

2.
《Chronobiology international》2013,30(1-2):280-314
Specific features of the 24-h blood pressure (BP) pattern are linked to progressive injury of target tissues and risk of cardiovascular disease (CVD) events. Several studies have consistently shown an association between blunted asleep BP decline and risk of fatal and nonfatal CVD events. Thus, there is growing focus on ways to properly control BP during nighttime sleep as well as during daytime activity. One strategy, termed chronotherapy, entails the timing of hypertension medications to endogenous circadian rhythm determinants of the 24-h BP pattern. Significant and clinically meaningful treatment-time differences in the beneficial and/or adverse effects of at least six different classes of hypertension medications, and their combinations, are now known. Generally, calcium channel blockers (CCBs) are more effective with bedtime than morning dosing, and for dihydropyridine derivatives bedtime dosing significantly reduces risk of peripheral edema. The renin-angiotensin-aldosterone system is highly circadian rhythmic and activates during nighttime sleep. Accordingly, evening/bedtime ingestion of the angiotensin-converting enzyme inhibitors (ACEIs) benazepril, captopril, enalapril, lisinopril, perindopril, quinapril, ramipril, spirapril, trandolapril, and zofenopril exerts more marked effect on the asleep than awake systolic (SBP) and diastolic (DBP) BP means. Likewise, the bedtime, in comparison with morning, ingestion schedule of the angiotensin-II receptor blockers (ARBs irbesartan, olmesartan, telmisartan, and valsartan exerts greater therapeutic effect on asleep BP, plus significant increase in the sleep-time relative BP decline, with the additional benefit, independent of drug terminal half-life, of converting the 24-h BP profile into a more normal dipping pattern. This is the case also for the bedtime versus upon-awakening regimen of combination ARB-CCB, ACEI-CCB, and ARB-diuretic medications. The chronotherapy of conventional hypertension medications constitutes a new and cost-effective strategy for enhancing the control of daytime and nighttime SBP and DBP levels, normalizing the dipping status of their 24-h patterning, and potentially reducing the risk of CVD events and end-organ injury, for example, of the blood vessels and tissues of the heart, brain, kidney, and retina. (Author correspondence: )  相似文献   

3.
The impact of environmental and behavioral factors on the 24-h profile of blood pressure (BP) has been well established. Various attempts have been made to control these exogenous factors, in order to investigate a possible endogenous circadian variation of BP. Recently, we reported the results of the first environmentally and behaviorally controlled laboratory study with 24-h recordings of BP and heart rate (HR) during maintained wakefulness. In this constant-routine study, a pronounced endogenous circadian rhythm of HR was found, but circadian variation of BP was absent. This result suggested that the circadian rhythm of BP observed in earlier controlled studies, with sleep allowed, was evoked by the sleep–wake cycle as opposed to the endogenous circadian pacemaker. In order to verify our previous finding during maintained wakefulness, we repeated the experiment five times with six normotensive, healthy young subjects. Statistical analyses of the hourly measurements of BP and HR confirmed the replicable presence of an endogenous circadian rhythm of HR, as well as the consistent absence of an endogenous circadian variation of BP. Thus, this study provided additional evidence that the 24-h profile of BP—as observed under normal circumstances—is the sole result of environmental and behavioral factors such as the occurrence of sleep, and has no endogenous circadian component. (Chronobiology International, 18(1), 85–98, 2001)  相似文献   

4.
The impact of environmental and behavioral factors on the 24-h profile of blood pressure (BP) has been well established. Various attempts have been made to control these exogenous factors, in order to investigate a possible endogenous circadian variation of BP. Recently, we reported the results of the first environmentally and behaviorally controlled laboratory study with 24-h recordings of BP and heart rate (HR) during maintained wakefulness. In this constant-routine study, a pronounced endogenous circadian rhythm of HR was found, but circadian variation of BP was absent. This result suggested that the circadian rhythm of BP observed in earlier controlled studies, with sleep allowed, was evoked by the sleep-wake cycle as opposed to the endogenous circadian pacemaker. In order to verify our previous finding during maintained wakefulness, we repeated the experiment five times with six normotensive, healthy young subjects. Statistical analyses of the hourly measurements of BP and HR confirmed the replicable presence of an endogenous circadian rhythm of HR, as well as the consistent absence of an endogenous circadian variation of BP. Thus, this study provided additional evidence that the 24-h profile of BP—as observed under normal circumstances—is the sole result of environmental and behavioral factors such as the occurrence of sleep, and has no endogenous circadian component. (Chronobiology International, 18(1), 85-98, 2001)  相似文献   

5.
Lack of nighttime blood pressure (BP) reduction by 10–20% from the mean daytime values (dipping) has been described as a distinguishing feature of essential hypertension and associated, also in normotensive subjects, with increased cardiovascular (CV) risk. Mechanisms involved in the loss of the nocturnal dip are still unclear, but involvement of autonomic nervous system (ANS) activity probably plays a crucial role. Sleep is fundamental in modulating ANS activity to maintain the physiological BP circadian rhythm, and for this reason its integrity has been widely investigated in hypertension. We investigated, under controlled conditions, the autonomic control of the CV system through an autonomic reflex screen in the awake condition and by assessment of circadian rhythm–, day-night-, time-, and state-dependent changes of BP and heart rate (HR) and associated sleep parameters in patients with a recent (≤1 yr) diagnosis of essential grade I hypertension naïve of therapy. Fourteen hypertensive patients (6 males, age: 43?±?11 yrs; body mass index [BMI]: 24?±?3?kg/m2) were compared with 28 healthy controls matched for sex, age, BMI (2 controls/patient) for cardiovascular reflex and to 8 different subjects from previous controls (6 males), comparable for age and BMI, for the day-night and nighttime CV profiles during two consecutive nights. The cardiovascular reflex screen data showed increased sympathetic effect in hypertensive patients, represented by higher overshoot of BP after Valsalva maneuver. Nighttime sleep architecture during the dark period in terms of duration, representation of sleep stages, sleep fragmentation, and incidence of arousals—periodic limb movements in sleep (PLMS) and PLMS arousals—was similar in patients and controls. Hypertensive patients displayed higher 24-h BP and HR values, but their sleep-related BP decrease was significantly reduced compared with controls. The circadian rhythms of BP and HR were intact and similar in patients and controls, coupling with the expected physiological peak time. BP and HR showed normal state-dependent modulation in hypertensive patients that, however, was higher in all sleep stages compared with controls. The lowering of systolic blood pressure (SBP) during non–rapid eye movement (NREM) sleep stages 1 and 2 and REM sleep, relative to daytime wake values, was significantly attenuated in the hypertensive group, whereas it was comparable to controls during slow-wave sleep. In hypertensive patients, analysis of sleep and CV parameters in the 90?min following sleep onset and preceding morning awakening showed normal depressor effect during the first part of the night after sleep onset and significantly higher BP rise in the hours preceding morning awakening. These findings were associated with comparable sleep architecture, sleep fragmentation, incidence of arousals, and PLMS and PLMS arousals in patients and controls. Our data suggest that drug-naïve essential grade I hypertension is associated with signs of increased vascular sympathetic response to standardized stress of the Valsalva maneuver during the awake condition, and during sleep with a non-dipping BP profile plus higher BP surge preceding morning awakening, assessable only by around-the-clock ambulatory BP monitoring, both representing additional CV risk already in early-stage hypertension and, therefore, requiring proper selection of pharmacological treatment. (Author correspondence: )  相似文献   

6.
To prevent recurrence of cerebrovascular disease (CVD), adequate control of blood pressure (BP) is extremely important for the treatment of hypertensive CVD patients. As absence of the nocturnal fall of BP by the expected 10–20% from daytime levels is reported to exaggerate target organ injury, 24-h ambulatory blood pressure monitoring (ABPM) was conducted, especially to obtain data during nighttime sleep. Forty-eight elderly bedridden chronic phase CVD hypertensive patients (assessed 1–3 mo after CVD accident) participated. As a group, nocturnal BP was higher than diurnal BP, whereas nocturnal pulse rate was lower than diurnal pulse rate. The nocturnal BP fall was blunted in most (~90%) of the patients. These results suggest that to perform a rational drug treatment, it is essential to do 24-h ABPM before initiation of antihypertensive therapy in elderly bedridden hypertensive CVD patients. (Author correspondence: )  相似文献   

7.
24 h and ultradian rhythms of blood pressure (BP) have been previously shown to be disorganized in nocturnal hypertensive subjects. The present study was undertaken to further analyze the ultradian and circadian BP rhythm structure in sleep-time hypertensive subjects with normal or elevated awake-time BP levels. Fourier analysis was used to fit 24, 12, 8, and 6 h curves to mean BP as well as heart rate (HR) time series data derived from 24 h ambulatory blood pressure monitoring. Awake and sleep periods were defined according to individual sleep diaries. Awake-time hypertension was defined as diurnal systolic (SBP) and/or diastolic BP (DBP) means ≥135/85 mmHg. Sleep-time hypertension was defined as nocturnal SBP and/or DBP means ≥120/70 mmHg. The sample included 240 awake-time normotensive subjects (180 sleep-time normotensives and 60 sleep-time hypertensives) and 138 untreated awake-time hypertensive subjects (31 sleep-time normotensives and 107 sleep-time hypertensives). The amplitude and integrity (i.e., percent rhythm) of the 24 and 12 h BP rhythms were lower in the sleep-time hypertensive subjects and higher in the awake-time hypertensive subjects. However, no differences were detected when the integrity and amplitude of the 6 and 8 h mean BP rhythms were analyzed. The sleep-time hypertensive group showed significantly higher 24 h BP rhythm acrophase variability. No differences could be found in any of the HR rhythm parameters. Altogether, the findings suggest a disorganization of the BP circadian rhythm in sleep-time hypertensives that results in reduced 24 h rhythm amplitude and integrity that could be related to cardiovascular risk.  相似文献   

8.
A daily rhythm of blood pressure (BP), with maximum values in the activity period, carries important prognostic information. The extent to which this rhythm depends on behavioral factors remains debated. Mice are the species of choice for functional genomics. In mice, episodes of wakefulness and sleep are not restricted to particular daily periods, allowing BP in each wake-sleep state to be measured at each time of day. The aim of this study was to investigate whether a circadian rhythm of BP is manifest in each wake-sleep state in mice. Mice with B6 genetic background (n?=?26) were implanted with a telemetric BP transducer and electrodes to discriminate wake-sleep states and recorded while housed under a 12:12?h light-dark period. For each mouse, 8 values of BP were obtained in each wake-sleep state (wakefulness, non-rapid-eye-movement sleep, and rapid-eye-movement sleep) by averaging over successive 3-h time bins. Analysis of variance evidenced a significant time effect in each wake-sleep state as well as a significant wake-sleep state?×?time interaction effect. In an additional group of mice (n?=?3) recorded in constant darkness, the Lomb-Scargle periodogram also revealed a significant circadian rhythm of BP in each wake-sleep state. These findings demonstrate that during each wake-sleep state, mice show daily and circadian rhythms of BP in conditions of entrainment to the light-dark cycle and in free-running conditions of constant darkness, respectively. (Author correspondence: )  相似文献   

9.
ABSTRACT

Background: Numerous clinical studies have evaluated valsartan and found more efficacious control of blood pressure (BP) variability when administered before sleep. The treatment leads to improved outcomes when compared to administration upon awakening. The mechanism underlying this etiology is not fully understood. The present study investigates the safety and efficacy of asleep administration of valsartan in spontaneously hypertensive rats (SHR) with a non-dipping blood pressure pattern compared to SHRs receiving administration during awake time. Materials and Methods: 84 Male SHRs and 28 male Wistar-Kyoto rats (WKY) were kept under a strict alternating 12-h light/dark cycle. WKYs were utilized as a non-disease control. Meanwhile, SHRs were randomly divided into three groups: untreated, Valsartan asleep administration (VSA) and Valsartan awake administration (VWA) respectively. The VSA group was treated with valsartan (30 mg/kg/d) after the light onset, while the VWA group was treated with valsartan (30 mg/kg/d) after light offset. Both groups were treated for 6 weeks. Tail artery blood pressure was measured every 4 h via a noninvasive tail cuff blood pressure measurement method. HE and Masson staining were used to evaluate any damage within the target organs. ELISA was used to determine the 24-h plasma renin-angiotensin system (RAS) concentration at 4-h intervals. Results: Based on our findings, VSA significantly reduced 24-h and evening mean BP and restored the abnormal circadian rhythm compared to VWA, which attenuated injuries in the majority of target organs except for the kidneys. Furthermore, VSA was found to activate RAS during the light cycle and inhibit it during the dark cycle. Conversely, VWA was found to deactivate RAS throughout the day which may be related to the circadian BP rhythm. Conclusion: VSA may be more efficacious than VWA in controlling BP, circadian BP rhythm and blood RAS rhythm. Recent cardiovascular outcome investigations substantiate that chronotherapy treatment might be a novel therapeutic strategy for hypertension therapy.

Abbreviations: Angiotensin-converting enzyme (ACE); Angiotensin converting enzyme inhibitors (ACEIs); Angiotensin II (ANG II); Analysis of variance (ANOVA); Angiotensin receptor blockers (ARBs); Blood Pressure (BP); Calcium Antagonists Calcium Channel Blockers (CCB); Chronic kidney diseases (CKD); Sodium carboxyl methyl cellulose (CMC-Na); Cardiac mass index (CMI); Cardiovascular diseases (CVD); Diastolic blood pressure (DBP); Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E); Kidney mass index (KMI); Liver mass index (LMI); Mean arterial blood pressure (MAP); Plasma renin concentration (PRC); Renin-angiotensin system (RAS); Rennin (REN); Systolic blood pressure (SBP); Student-Newman-Keuls q test (SNK-q test); Spontaneous hypertension rats (SHR); Valsartan asleep Administration (VSA); Valsartan awake Administration (VWA); Wistar-Kyoto (WKY); Mesor (M); Amplitude (A); Phase (φ).  相似文献   

10.
A daily rhythm of blood pressure (BP), with maximum values in the activity period, carries important prognostic information. The extent to which this rhythm depends on behavioral factors remains debated. Mice are the species of choice for functional genomics. In mice, episodes of wakefulness and sleep are not restricted to particular daily periods, allowing BP in each wake-sleep state to be measured at each time of day. The aim of this study was to investigate whether a circadian rhythm of BP is manifest in each wake-sleep state in mice. Mice with B6 genetic background (n?=?26) were implanted with a telemetric BP transducer and electrodes to discriminate wake-sleep states and recorded while housed under a 12:12?h light-dark period. For each mouse, 8 values of BP were obtained in each wake-sleep state (wakefulness, non-rapid-eye-movement sleep, and rapid-eye-movement sleep) by averaging over successive 3-h time bins. Analysis of variance evidenced a significant time effect in each wake-sleep state as well as a significant wake-sleep state?×?time interaction effect. In an additional group of mice (n?=?3) recorded in constant darkness, the Lomb-Scargle periodogram also revealed a significant circadian rhythm of BP in each wake-sleep state. These findings demonstrate that during each wake-sleep state, mice show daily and circadian rhythms of BP in conditions of entrainment to the light-dark cycle and in free-running conditions of constant darkness, respectively.  相似文献   

11.
Independent prospective studies have found that ambulatory blood pressure (BP) monitoring (ABPM) is more closely correlated with target organ damage and cardiovascular disease (CVD) risk than clinic BP measurement. This is based on studies in which BP was sampled every 15–30?min for ≤24?h, without taking into account that reproducibility of any estimated parameter from a time series to be potentially used for CVD risk assessment might depend more on monitoring duration than on sampling rate. Herein, we evaluated the influence of duration (48 vs. 24?h) and sampling rate of BP measurements (form every 20–30?min up to every 2?h) on the prognostic value of ABPM-derived parameters. We prospectively studied 3344 subjects (1718 men/1626 women), 52.6?±?14.5 yrs of age, during a median follow-up of 5.6 yrs. Those with hypertension at baseline were randomized to ingest all their prescribed hypertension medications upon awakening or ≥1 of them at bedtime. At baseline, BP was measured at 20-min intervals from 07:00 to 23:00?h and at 30-min intervals at night for 48?h, and physical activity was simultaneously monitored every min by wrist actigraphy to accurately derive the awake and asleep BP means. Identical assessment was scheduled annually and more frequently (quarterly) if treatment adjustment was required. ABPM profiles were modified to generate time series of identical 48-h duration but with data sampled at 1- or 2-h intervals, or shorter, i.e., first 24?h, time series with data sampled at the original rate (daytime 20-min intervals/nighttime 30-min intervals). Bland-Altman plots indicated that the range of individual differences in the estimated awake and asleep systolic (SBP) and diastolic BP (DBP) means between the original and modified ABPM profiles was up to 3-fold smaller for data sampled every 1?h for 48?h than for data sampled every 20–30?min for the first 24?h. Reduction of ABPM duration to just 24?h resulted in error of the estimated asleep SBP mean, the most significant prognostic marker of CVD events, in the range of ?21.4 to +23.9?mm Hg. Cox proportional-hazard analyses adjusted for sex, age, diabetes, anemia, and chronic kidney disease revealed comparable hazard ratios (HRs) for mean BP values and sleep-time relative BP decline derived from the original complete 48-h ABPM profiles and those modified to simulate a sampling rate of one BP measurement every 1 or 2?h. The HRs, however, were markedly overestimated for SBP and underestimated for DBP when the duration of ABPM was reduced from 48 to only 24?h. This study on subjects evaluated prospectively by 48-h ABPM documents that reproducibility in the estimates of prognostic ABPM-derived parameters depends markedly on duration of monitoring, and only to a lesser extent on sampling rate. The HR of CVD events associated with increased ambulatory BP is poorly estimated by relying on 24-h ABPM, indicating ABPM for only 24?h may be insufficient for proper diagnosis of hypertension, identification of dipping status, evaluation of treatment efficacy, and, most important, CVD risk stratification. (Author correspondence: )  相似文献   

12.
Circadian variation of fibrinolytic activity in blood.   总被引:9,自引:0,他引:9  
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:00 p.m. and then dropped to trough levels at 3:00-4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleep/wake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1), show a marked circadian variation in plasma. In contrast, levels of plasminogen, alpha 2-antiplasmin, urinary-type plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAI-1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAI-1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAI-1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore to define the 24-h pattern of plasma tPA and PAI-1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Correlation between blood pressure (BP) level and target organ damage, cardiovascular disease (CVD) risk, and long-term prognosis is greater for ambulatory BP monitoring (ABPM) than clinical BP measurements. Nevertheless, the latter continue to be the “gold standard” to diagnose hypertension, assess CVD risk, and evaluate hypertension treatment. Independent ABPM studies have found that elevated sleep-time BP is a better predictor of CVD risk than either the awake or 24-h BP mean. A major limitation of all previous ABPM-based prognostic studies is the reliance only upon a single baseline profile from each participant at the time of inclusion, without accounting for potential changes in the level and pattern of ambulatory BP thereafter during follow-up. Accordingly, impact of the alteration over time, i.e., during long-term follow-up, of specific features of the 24-h BP variation on CVD risk has never been properly investigated. We evaluated the comparative prognostic value of (i) clinic and ambulatory BP; (ii) different ABPM-derived characteristics, e.g., asleep or awake BP mean; and (iii) specific changes in ABPM characteristic during follow-up, mainly whether reduced CVD risk is more related to the progressive decrease of asleep or awake BP. We prospectively studied 3344 subjects (1718 men/1626 women), 52.6?±?14.5 (mean?±?SD) yrs of age, during a median follow-up of 5.6 yrs. Those with hypertension at baseline were randomized to ingest all their prescribed hypertension medications upon awakening or ≥1 of them at bedtime. At baseline, BP was measured at 20-min intervals from 07:00 to 23:00?h and at 30-min intervals at night for 48-h, and physical activity was simultaneously monitored every min by wrist actigraphy to accurately derive awake and asleep BP means. Identical assessment was scheduled annually and more frequently (quarterly) if treatment adjustment was required. Data collected either at baseline or the last ABPM evaluation per participant showed that the asleep systolic BP mean was the most significant predictor of both total CVD events and major CVD events (a composite of CVD death, myocardial infarction, and stroke). Moreover, when the asleep BP mean was adjusted by the awake mean, only the former was a significant independent predictor of outcome in a Cox proportional-hazard model adjusted for sex, age, diabetes, anemia, and chronic kidney disease. Analyses of changes in ambulatory BP during follow-up revealed 17% reduction in CVD risk for each 5?mm Hg decrease in the asleep systolic BP mean (p?<?.001), independent of changes in any other clinic or ambulatory BP parameter. The increased event-free survival associated with the progressive reduction in the asleep systolic BP mean during follow-up was significant for subjects with either normal or elevated BP at baseline. The ABPM-derived asleep BP mean was the most significant prognostic marker of CVD morbidity and mortality. Most important, the progressive decrease in asleep BP mean, a novel therapeutic target that requires proper patient evaluation by ABPM and best achieved by ingestion of at least one hypertension medication at bedtime, was the most significant predictor of event-free survival. (Author correspondence: )  相似文献   

14.
Radioimmunoassay determinations of serum prolactin every 2 hrs in twelve healthy subjects (six women and six men), aged between 22 and 34, reveal that several episodes of hormone secretion occur over a 24-h period. The two episodes displaying significant oscillations have 24-h and 8-h periods, with maxima occurring respectively at 04(30) and at 07(00), 15(00) and 23(00). Accordingly, the highest prolactin levels in serum occur during the night, but oscillations are present throughout the day. The observation schedule adopted leads us to conclude that the main secretory rhythm is synchronized with sleep. The 8-h periods seem to be rather dependent on the course of time.  相似文献   

15.
《Chronobiology international》2013,30(1-2):233-259
Gestational hypertension and preeclampsia are major contributors to perinatal morbidity and mortality. The diagnosis of gestational hypertension still relies on conventional clinic blood pressure (BP) measurements and thresholds of ≥140/90?mm Hg for systolic (SBP)/diastolic (DBP) BP. However, the correlation between BP level and target organ damage, cardiovascular disease risk, and long-term prognosis is greater for ambulatory BP monitoring (ABPM) than clinic BP measurement. Accordingly, ABPM has been suggested as the logical approach to overcoming the low sensitivity and specificity of clinic BP measurements in pregnancy. With the use of ABPM, differing predictable BP patterns throughout gestation have been identified for clinically healthy and hypertensive pregnant women. In normotensive pregnancies, BP steadily decreases up to the middle of gestation and then increases up to the day of delivery. In contrast, women who develop gestational hypertension or preeclampsia show stable BP during the first half of pregnancy and a continuous linear BP increase thereafter until delivery. Epidemiologic studies have also consistently reported sex differences in the 24-h patterns of ambulatory BP and heart rate. Typically, men exhibit a lower heart rate and higher BP than women, the differences being larger for SBP than DBP. Additionally, as early as in the first trimester of gestation, statistically significant increased 24-h SBP and DBP means characterize women complicated with gestational hypertension or preeclampsia compared with women with uncomplicated pregnancies. However, the normally lower BP in nongravid women as compared with men, additional decrease in BP during the second trimester of gestation in normotensive but not in hypertensive pregnant women, and significant differences in the 24-h BP pattern between healthy and complicated pregnancies at all gestational ages have not been taken into consideration when establishing reference BP thresholds for the diagnosis of hypertension in pregnancy. Several studies reported that use of the 24-h BP mean is not a proper test for an individualized early diagnosis of hypertension in pregnancy defined on the basis of cuff BP measurements, thus concluding that from such an awkward approach ABPM is not useful in pregnancy. The 24-h BP pattern that characterizes healthy pregnant women at all gestational ages suggests the use for diagnosis of a time-specified reference limit reflecting that mostly predictable BP variability. Once the time-varying threshold, given, for instance, by the upper limit of a tolerance interval, is available, the hyperbaric index (HBI), as a determinant of BP excess, can be calculated as the total area of any given subject's BP above the threshold. This tolerance-hyperbaric test, where diagnosis of gestational hypertension is based on the HBI calculated with reference to a time-specified tolerance limit, has been shown to provide high sensitivity and specificity for the early identification of subsequent hypertension in pregnancy, as well as a valuable approach for prediction of pregnancy outcome. ABPM during gestation, starting preferably at the time of the first obstetric check-up following positive confirmation of pregnancy, provides sensitive endpoints for use in early risk assessment and guide for establishing prophylactic or therapeutic intervention, and should thus be regarded as the required standard for the diagnosis of hypertension in pregnancy. (Author correspondence: )  相似文献   

16.
ABSTRACT

Obstructive sleep apnea (OSA) is associated with hypertension, cardiovascular disease, and a change in the 24 h pattern of adverse cardiovascular events and mortality. Adverse cardiovascular events occur more frequently in the middle of the night in people with OSA, earlier than the morning prevalence of these events in the general population. It is unknown if these changes are associated with a change in the underlying circadian rhythms, independent of behaviors such as sleep, physical activity, and meal intake. In this exploratory analysis, we studied the endogenous circadian rhythms of blood pressure, heart rate, melatonin and cortisol in 11 participants (48 ± 4 years; seven with OSA) throughout a 5 day study that was originally designed to examine circadian characteristics of obstructive apnea events. After a baseline night, participants completed 10 recurring 5 h 20 min behavioral cycles divided evenly into standardized sleep and wake periods. Blood pressure and heart rate were recorded in a relaxed semirecumbent posture 15 minutes after each scheduled wake time. Salivary melatonin and cortisol concentrations were measured at 1–1.5 h intervals during wakefulness. Mixed-model cosinor analyses were performed to determine the rhythmicity of all variables with respect to external time and separately to circadian phases (aligned to the dim light melatonin onset, DLMO). The circadian rhythm of blood pressure peaked much later in OSA compared to control participants (group × circadian phase, p < .05); there was also a trend toward a slightly delayed cortisol rhythm in the OSA group. Rhythms of heart rate and melatonin did not differ between the groups. In this exploratory analysis, OSA appears to be associated with a phase change (relative to DLMO) in the endogenous circadian rhythm of blood pressure during relaxed wakefulness, independent of common daily behaviors.  相似文献   

17.
Systolic (S) and diastolic (D) blood pressures (BP) [SBP and DBP] are circadian rhythmic with period (τ) in healthy persons assumed to be maintained at 24.0h. We tested this assumption in a sample of 30 healthy career (mean >12 yrs) 30-to-46 yr-old male Caucasian French firefighters (FFs) categorized into three groups according to work schedule and duties: Group A – 12 FFs working 12h day, 12h night, and occasionally 24h shifts and whose primary duties are firefighting plus paramedical and road rescue services; Group B – 9 FFs working mostly 12h day and 12h night shifts and whose duties are answering incoming emergency calls and coordinating service vehicle dispatch from fire stations with Group A personnel; Group C – 9 day shift (09:00–17:00h) FFs charged with administrative tasks. SBP and DBP, both in winter and in summer studies of the same FFs, were sampled by ambulatory BP monitoring every 1h between 06:00–23:00h and every 2h between 23:01–05:59h, respectively, their approximate off-duty wake and sleep spans, for 7 consecutive days. Activity (wrist actigraphy) was also sampled at 1-min intervals. Prominent τ of each variable was derived by a power spectrum program written for unequal-interval time series data, and between-group differences in incidence of τ≠24h of FFs were assessed by chi square test. Circadian rhythm disruption (τ≠24h) of either the SBP or DBP rhythm occurred almost exclusively in night and 24h shift FFs of Group A and B, but almost never in day shift FFs of Group C, and it was not associated with altered τ from 24.0h of the circadian activity rhythm. In summer, occurrence of τ≠24 for FFs of Group A and B differed from that for FFs of Group C in SBP (p=0.042) and DBP (p=0.015); no such differences were found in winter (p>0.10). Overall, manifestation of prominent τ≠24h of SBP or DBP time series was greater in summer than winter, 27.6% versus 16.7%, when workload of Group B FFs, i.e. number of incoming emergency telephone calls, and of Group A FFs, i.e. number of dispatches for provision of emergency services, was, respectively, two and fourfold greater and number of 12h night shifts worked by Group B FFs and number of 24h shifts worked by Group A FFs was, respectively, 92% and 25% greater. FFs of the three groups exhibited no winter-summer difference in τ≠24h of SBP or SDP; however, τ≠24h of DBP in Group B FFs was more frequent in summer than winter (p=0.046). Sleep/wake cycle disruption, sleep deprivation, emotional and physical stress, artificial light-at-night, and altered nutrient timings are hypothesized causes of τ≠24h for BP rhythms of affected Groups A and B FFs, but with unknown future health effects.  相似文献   

18.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

19.
Human physiology and behavior are characterized by a daily internal temporal dimension. This so-called circadian rhythmicity is present for almost all variables studied to date, persists in the absence of external cycles, and is synchronized to the external 24-h world by an internally generated circadian rhythm of light sensitivity. The light-sensitive circadian pacemaker, presumably also in humans located in the suprachiasmatic nucleus of the hypothalamus, drives the endogenous circadian component of rhythmicity for a number of variables including plasma melatonin, alertness, sleep propensity and sleep structure. Overt rhythmicity and the consolidation of vigilance states are generated by a fine-tuned interaction of this circadian process with other regulatory processes such as sleep homeostasis.  相似文献   

20.
Blood pressure (BP) and heart rate (HR) data were collected over 24 h with an ambulatory BP monitor to (a) determine the existence of 12-, 24-, and combined 12- and 24-h BP patterns in children as previously noted for adults; (b) provide MESOR (an acronym for midline estimating statistics of rhythm), amplitude, and acrophase data for subgroups of students by race and gender; and (c) determine the influence of HR (as an estimate of activity) on BP and BP patterns for 100 normal, healthy students 9-12 years of age. We found no statistically significant differences between various racial groups or between gender for MESOR, amplitude, acrophase, or degree of sinusoidality of circadian rhythmicity (R2 values) for BP; clinically interesting differences were observed, including lower MESOR BPs in Hispanic males when compared with their female counterparts and slightly higher MESOR BPs in blacks of both genders when compared with whites. In addition, we demonstrated subgroups of students who exhibited specific 24-h and combined 12- and 24-h patterns. Also, 67% of subjects showed stable or nonrhythmic BP patterns, perhaps related to BP sampling intervals. Differences in HR, as a surrogate measure of activity, accounted for 56% of the variation in systolic BP but only 26% in diastolic BP over the 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号