首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manner in which multifunctional steroid hormones realize their separate biological functions in mammal organisms is considered. This study is carried out on the basis of a systematic set of progesterone analogues, which we developed and described in part I of the review. This set has for the first time enabled the use of compounds of this type for studying the pathways and realization mechanisms of separate biological functions of steroid hormones. The interaction of pregna-D′-pentaranes with the classical progesterone receptor, their independent influence on the myometrium and ovogenesis, and some nonclassical effects are described. A scheme of realization is suggested for the biological functions already known, newly discovered, and presumed by us that, during pregnancy, are fulfilled in mammal organisms by progesterone and its nearest metabolite, dihydroprogesterone.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 227–238.Original Russian Text Copyright © 2005 by Kamernitzky, Levina.The Cycle of Works of the Authors Described in the Review Has Won the Shemyakin Prize in 2004For part I, see [1].  相似文献   

2.
The synthesis, modification, structure, and biological activity in vivo of the 16alpha,17alpha-cycloalkanoprogesterone (pregna-D'-pentarane) analogues of progesterone are described. A possibility of separation of their biological functions has been demonstrated. A systematic synthesis of a set of uniform compounds that differ in a limited number of alterable parameters was developed. It resulted in an instrument useful for the investigation of pathways and mechanisms by which the steroid hormones fulfill their biological functions and for the probable discovery of new functions masked by the wide effects of native compounds.  相似文献   

3.
孕酮受体基因的研究进展   总被引:3,自引:0,他引:3  
张宝云  狄冉  储明星  王凭青  鲁浪 《遗传》2008,30(12):1536-1544
摘要: 孕酮作为一种甾体激素, 在各种雌性哺乳动物生殖活动中起关键作用。在人类和其他脊椎动物中, 孕酮的生物活性主要是通过两个孕酮受体PGR-A和PGR-B转录活性的调节来介导。文章介绍了孕酮受体基因的结构、表达调控和多态性, 并讨论了该基因与哺乳动物生殖功能的关系。  相似文献   

4.
Ovarian steroid hormones exert a broad range of effects on the body and brain. In the nervous system, estrogen and progesterone have crucial feedback actions on the hypothalamic neurons that drive the reproductive axis. In addition, hormones exert a variety of actions on other traditionally nonreproductive functions such as cognition, learning and memory, neuroprotection, mood and affective behavior, and locomotor activity. The actions of hormones on the hypothalamus are largely mediated by their nuclear hormone receptors, the two estrogen receptors, ERalpha and ERbeta, and the two progesterone receptor isoforms, PR-A and PR-B. Thus, changes in the circulating concentrations of estrogens and progestins during the life cycle can result in differential activation of their receptors. Furthermore, changes in the numbers, activity, and distribution of hypothalamic ERs and PRs can occur as a function of developmental age. The purpose of this article is to review the literature on the causes and consequences of alterations in steroid hormones, their neural receptors, and their interactions on reproductive senescence. We have also discussed several important experimental design considerations, focusing on rodent models in current use for understanding the mechanisms of menopause in women.  相似文献   

5.
The role of cyclic AMP (cAMP) in ovarian follicular functions in Rana pipiens was investigated with the use of the adenylate cyclase stimulator, forskolin, which is thought to elevate intracellular level of cAMP. Effects of forskolin on oocyte germinal vesicle breakdown (GVBD) and on progesterone production by the follicles were assessed during the course of in vitro culture. Addition of forskolin to culture medium suppressed both progesterone-and frog pituitary homogenate (FPH)-induced meiotic maturation of the oocytes. Inhibitory effects of forskolin were essentially reversible and forskolin completely inhibited GVBD when added during the first four hours of incubation following exposure to progesterone. Forskolin alone stimulated a low level progesterone production by isolated follicles, but markedly stimulated progesterone production when it was supplemented with a low dose of FPH (0.005 pituitary equivalent/ml). Thus, forskolin acts synergistically with FPH on follicle cells to stimulate progesterone production. A higher dose of FPH (0.05 pitui. eq./ml) produced no additional synergistic effect of forskolin. Therefore, forskolin appears to have two contradictory functions in ovarian follicles: it augments FPH induced follicle secretion of meiosis initiator, progesterone, and simultaneously suppresses the maturation of the oocytes triggered by exogenous progesterone or FPH. The data presented indicate that there are two independent adenylate cyclase systems in the ovarian follicles which have separate functions: one in the follicle cells and the other in the oocyte. The two enzyme systems are thus compartmentalized and regulate different biological functions using the same messenger, cAMP. The data provide evidence that in amphibians, as in mammals, pituitary hormones regulate steroid hormone production by follicle cells via a cyclic AMP system. Thus, control of oocyte maturation induction appears to be determined by the relative levels of cAMP present in the follicle cells and oocytes.  相似文献   

6.
Kudikina NP 《Ontogenez》2011,42(3):213-219
Effect of preparations ofa peptide nature (pituitrin and oxytocin) and of a steroid nature (progesterone and hydrocortisone) on embryonic development of freshwater gastropod Lymnaea stagnalis (Mollusca, Gastropoda, Pulmonata) is described. The hormonal preparations used, which differed in chemical nature and physiological activity, may render diverse effects on embryogenesis of the studied mollusk. Of neurohormones, pituitrin rendered the most noticeable and principally stimulating effect. Oxytocin was incorporated in regulatory processes much later and its effect on the rate of realization of particular stages depended more on the quality of occurring changes. In final stages of development, this hormone principally inhibited growth and development of embryos. The female sex hormone progesterone rendered an expressed stimulatory effect, especially notable in later developmental stages of embryos. The hormone hydrocortisone stimulated initial stages of embryogenesis. Its effect was almost not expressed in the final stages. The discovered differences seem to be related both to the functional specificity of the investigated compounds and to specific traits of mechanisms of realization of their effects. A hypothesis is formulated: in gastropods, similarly to vertebrates, the hormones are systemic embryonic and postnatal inducers of differentiation processes.  相似文献   

7.
A Maggi  J Perez 《Life sciences》1985,37(10):893-906
  相似文献   

8.
9.
The synthesis, modification, structure, and biological activity in vivo of the 16,17- cycloalkanoprogesterone (pregna-D-pentarane) analogues of progesterone are described. A possibility of separation of their biological functions has been demonstrated. A systematic synthesis of a set of uniform compounds that differ in a limited number of alterable parameters was developed. It resulted in an instrument useful for the investigation of pathways and mechanisms by which the steroid hormones fulfill their biological functions and for the probable discovery of new functions masked by the wide effects of native compounds.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 115–129.Original Russian Text Copyright © 2005 by Kamernitzky, Levina.THE CYCLE OF WORKS OF THE AUTHORS DESCRIBED IN THE REVIEW HAS WON THE SHEMYAKIN PRIZE IN 2004  相似文献   

10.
The mammary gland is a dynamic organ that undergoes cyclic developmental and regressive changes during the lifetime of a female mammal. Mammogenesis begins during embryonic life with the development of the first mammary gland rudiments and ductal system. After birth, during the pre-pubertal period, the ductal growth of the mammary parenchyma occurs through the fat pad. In most of the ruminant species allometric mammary parenchyma development begins with the onset of cyclic ovarian secretions activity. The two main hormones secreted during an ovarian cycle are estradiol and progesterone. These steroid hormones are derived from cholesterol and are synthesized by theca and granulosa cells in ovaries. During puberty, the mammary parenchyma develops in a compact, highly arborescent parenchymal mass surrounded by a dense connective matrix. Ductal elongation and lobulo-alveolar development are accomplished during growth and pregnancy to prepare for future milk production. At the end of lactation, the mammary gland undergoes involution, which corresponds to a regression of the secretory tissue, a reduction in the alveolar size and a loss of mammary epithelial cells (MECs). Ovarian steroids (estradiol and progesterone) appear to be key regulators of the different stages of mammogenesis and mammary function. Through this review, the role and the importance of ovarian steroids on mammary gland and on MECs is described.  相似文献   

11.
M S Wisel  J K Datta  R N Saxena 《Steroids》1991,56(3):148-153
This study deals with the estrous cycle of guinea pigs in relation to sexual behavior, uterine weight, levels of gonadotropins, steroid hormones, and steroid hormone receptors in the uterus. The guinea pigs in this study showed cyclic changes in various reproductive functions broadly similar to other laboratory species studied. The increase in the uterine weight coincided with high concentration of steroid hormones (estradiol and progesterone) secreted during proestrus and estrus. The elevated levels of steroid hormone receptor concentrations in the uterus during these periods also confirm the role of these hormones. The rise in progesterone level from day 14 of the cycle was associated with lordosis and its related behavior. It was noted that the "estrus behavior" is the most accurate external marker for ovulation and sexual receptivity to males. It was also observed that there is an association between follicle-stimulating hormone and luteinizing hormone during the preovulatory period that was not demonstrated in previous studies.  相似文献   

12.
Sex hormone-binding globulin (SHBG) is a plasma glycoprotein that binds a number of circulating steroid hormones (testosterone, dihydrotestosterone and estradiol) with high affinity, thus regulating their free concentration in plasma. In addition to binding steroids, SHBG itself binds to receptor sites on plasma membranes with somewhat unusual kinetics. Both the off and on rates are quite slow. The steroid-binding and membrane-binding functions are interwined in what is clearly an allosteric relationship. Occupation of SHBG's steroid-binding site by a steroid inhibits its ability to bind to its membrane receptor-binding site. This inhibition is not related to a steroid's biological activity. Metabolites of steroids without biological activity, e.g. 2-methoxyestradiol, actively inhibit SHBG's interaction with its membrane receptor. However, if unliganded SHBG is allowed to bind to its receptor on intact cells, and an appropriate steroid hormone then is introduced, adenylate cyclase is activated and intracellular cAMP increases. This function is specific for steroids with biological activity, 2-methoxyestradiol has no activity in this arena. These observations demonstrate a potentially important role for SHBG as a regulator of cell function. They also demonstrate an additional mode of action of steroid hormones, one that does not require that the steroid interact with a steroid receptor.  相似文献   

13.
Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15?years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.  相似文献   

14.
Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions.  相似文献   

15.
16.
Taking into consideration the biological importance of interaction between antioxidant defense (AD) enzymes and sexual steroid hormones it was deemed important to compare our recent achievements in the field with the state of current knowledge. The main goal of the present review was to investigate the changes of AD enzyme activities: superoxide dismutases, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase in the brain of female and male rats depending on progesterone and estradiol. These ovarian steroids produce their effects by acting on numerous target tissues and organs, such as the reproductive organs, bone tissue and cartilage, peripheral blood vessels and the central nervous system (CNS). We have chosen it as a new parameter that might represent an important indicator of the changes within the CNS, bearing in mind the biological importance of the enzymes of the AD system. Our experimental results indicate that the AD enzyme activities in the brain tissue of female and male rats show a certain dependence on the concentration of progesterone and estradiol. The present review suggests that the modulation of the oxidative and antioxidative capacity by sexual steroid hormones is mediated through antioxidant metabolizing enzymes.  相似文献   

17.
The solubility of the three steroid hormones, progesterone, testosterone, and estradiol-17 beta in water and phosphatidylcholine vesicles was measured after shaking and ultrasonication. All three steroids have low water solubility, which increases considerably at sonication for testosterone and estradiol-17 beta. The phosphatidylcholine vesicles have a very small solubilising capacity for the steroids; about 20 mumol/mol. This increases at sonication for estradiol-17 beta and decreases for testosterone. The capacity for progesterone is almost unaltered. The incorporation of cholesterol in the vesicles decreased the solubilisation capacity for testosterone and estradiol-17 beta but increased that for progesterone of shaked preparations. For the sonicated systems the cholesterol decreased the solubilising capacity for estradiol-17 beta but increased that for testosterone. The solubilisation experiments indicate that the steroid hormones are solubilised in the hydrocarbon part of the phosphatidylcholine bilayer and also 13CNMR results support this conclusion.  相似文献   

18.
19.
20.
The central nervous system (CNS) and the peripheral nervous system (PNS) are targets for steroid hormones where they regulate important neuronal functions. Some steroid hormones are synthesized within the nervous system, either de novo from cholesterol, or by the metabolism of precursors originating from the circulation, and they were termed ‘neurosteroids'. The sex steroid progesterone can also be considered as a neurosteroid since its synthesis was demonstrated in rat glial cell cultures of the CNS (oligodendrocytes and astrocytes) and of the PNS (Schwann cells). Both types of glial cells express steroid hormone receptors, ER, GR and PR. As in target tissue, e.g. the uterus, PR is estrogen-inducible in brain glial cell cultures. In the PNS, similar PR-induction could not be seen in pure Schwann cells derived from sciatic nerves. However, a significant PR-induction by estradiol was demonstrated in Schwann cells cocultured with dorsal root ganglia (DRG), and we will present evidence that neuronal signal(s) are required for this estrogen-mediated PR-induction. Progesterone has multiple effects on glial cells, it influences growth, differentiation and increases the expression of myelin-specific proteins in oligodendrocytes, and potentiates the formation of new myelin sheaths by Schwann cells in vivo. Progesterone and progesterone analogues also promotes myelination of DRG-Neurites in tissue culture, strongly suggesting a role for this neurosteroid in myelinating processes in the CNS and in the PNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号