首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe2?-O? + (?)NO → trHbN-Fe3?-OH? + NO??) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (?)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (?)NO and O? to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration. Here, we report the high-resolution solution structure of a complex between two crucial MICs, TgMIC6 and TgMIC1. Furthermore, we identify two analogous interaction sites within separate epidermal growth factor-like (EGF) domains of TgMIC6-EGF2 and EGF3-and confirm that both interactions are functional for the recognition of host cell receptor in the parasite, using immunofluorescence and invasion assays. The nature of this new mode of recognition of the EGF domain and its abundance in apicomplexan surface proteins suggest a more generalized means of constructing functional assemblies by using EGF domains with highly specific receptor-binding properties.  相似文献   

17.
In the heme-based sensor Dos from Escherichia coli, the ferrous heme is coordinated by His-77 and Met-95. The latter residue is replaced upon oxygen binding or oxidation of the heme. Here we investigate the early signaling processes upon dissociation of the distal ligand using ultrafast spectroscopy and site-directed mutagenesis. Geminate CO rebinding to the heme domain DosH appears insensitive to replacement of Met-95, in agreement with the notion that this residue is oriented out of the heme pocket in the presence of external ligands. A uniquely slow 35-ps phase in rebinding of the flexible methionine side chain after dissociation from ferrous DosH is completely abolished in rebinding of the more rigid histidine side chain in the M95H mutant protein, where only the 7-ps phase, common to all 6-coordinate heme proteins, is observed. Temperature-dependence studies indicate that all rebinding of internal and external ligands is essentially barrierless, but that CfigsO escape from the heme pocket is an activated process. Solvent viscosity studies combined with molecular dynamics simulations show that there are two configurations in the ferrous 6-coordinate protein, involving two isomers of the Met-95 side chain, of which the structural changes extend to the solvent-exposed backbone, which is part of the flexible FG loop. One of these configurations has considerable motional freedom in the Met-95-dissociated state. We suggest that this configuration corresponds to an early signaling intermediate state, is responsible for the slow rebinding, and allows small ligands in the protein to efficiently compete for binding with the heme.  相似文献   

18.
The essential role of human dual oxidase 2 (hDUOX2) in thyroid hormone biosynthesis defines this member of the NOX/DUOX family, whose absence due to mutation has been directly related to disease, specifically hypothyroidism. Both human DUOX isoforms, hDUOX1 and hDUOX2, are expressed in thyroid tissue; however, hDUOX1 cannot compensate for inactivation of hDUOX2, suggesting that each enzyme is differentially regulated and/or functions in a unique manner. In efforts to uncover relevant structural and functional differences we have expressed and purified the peroxidase domain of hDUOX21–599 for direct comparison with the previously studied hDUOX11–593. As was shown for hDUOX1, the truncated hDUOX2 domain purifies without a bound heme co-factor and displays no peroxidase activity. However, hDUOX21–599 displays greater stability than hDUOX11–593. Surprisingly, upon titration with heme, both isoforms bind heme with a low micromolar affinity, demonstrating that they retain a heme binding site. A conformational difference in the full-length protein and/or a protein–protein interaction may be required to increase the heme binding affinity.  相似文献   

19.
Temporal and spatial control of the actin cytoskeleton are crucial for a range of eukaryotic cellular processes. Capping protein (CP), a ubiquitous highly conserved heterodimer, tightly caps the barbed (fast-growing) end of the actin filament and is an important component in the assembly of various actin structures, including the dynamic branched filament network at the leading edge of motile cells. New research into the molecular mechanism of how CP interacts with the actin filament in vitro and the function of CP in vivo, including discoveries of novel interactions of CP with other proteins, has greatly enhanced our understanding of the role of CP in regulating the actin cytoskeleton.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号