首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small  Ian  Wintz  Henri  Akashi  Kinya  Mireau  Hakim 《Plant molecular biology》1998,38(1-2):265-277
Eukaryotic cells are divided into multiple membrane-bound compartments, all of which contain proteins. A large subset of these proteins perform functions that are required in more than one compartment. Although in most cases proteins carrying out the same function in different compartments are encoded by different genes, this is not always true. Numerous examples have now been found where a single gene encodes proteins (or RNAs) found in two (or more) cell organelles or membrane systems. Some particularly clear examples come from protein synthesis itself: plant cells contain three protein-synthesizing compartments, the cytosol, the mitochondrial matrix and the plastid stroma. All three compartments thus require tRNAs and aminoacyl-tRNA synthetases. Some mitochondrial tRNAs and their aminoacyl-tRNA synthetases are identical to their cytosolic counterparts and they are encoded by the same genes. Similarly, some mitochondrial and plastid aminoacyl-tRNA synthetases are encoded by the same nuclear genes. The various ways in which differentially targeted products can be generated from single genes is discussed.  相似文献   

2.
两种具有调节血管生成作用的氨基酰-tRNA合成酶   总被引:2,自引:0,他引:2  
氨基酰-tRNA合成酶是生物体内蛋白质合成过程中的一类关键酶,它催化体内tRNA的氨基酰化反应.作为一类古老的蛋白质,氨基酰-tRNA合成酶在其漫长的进化过程中,通过其他结构域的插入或融合逐渐演化出许多新的功能.最近的研究结果表明,人酪氨酰-tRNA合成酶的片段具有促进血管生成的功能,而人色氨酰-tRNA合成酶的片段则具有抑制血管生长的功能.在哺乳动物细胞中,蛋白质的生物合成途径与细胞信号转导途径紧密相连.今后,随着对氨基酰-tRNA合成酶研究的不断深入,可以通过它们与细胞因子和信号转导相连的功能治疗人类的疾病.  相似文献   

3.
In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed.  相似文献   

4.
Aminoacyl-tRNA synthetases (codases) catalyze aminoacylation of a particular tRNA with the corresponding amino acid at the first step of protein biosynthesis. The review considers the universal structural and functional characteristics of this largest family of enzymes, partitioned into two classes. The modes of tRNA binding and recognition, as well as additional editing activity, which are responsible for the extremely high fidelity of aminoacyl-tRNA synthesis, are discussed. The available data suggest an unusual evolutionary history for the most important components of the mechanism that ensures the proper synthesis of proteins and the association of this mechanism with amino acid biosynthesis. In addition, the review considers the secondary functions of synthetases in various cell metabolic processes, including pathophysiological ones. Their investigation may help to develop new diagnostic techniques and therapies.  相似文献   

5.
Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease. Calpain 2 and calpain 1 could partially hydrolyze most MSC components to generate specific fragments that resembled those reported previously. The cleavage sites of calpain in ArgRS, GlnRS, and p43 were precisely mapped. After cleavage, their N-terminal regions were removed. Sixty-three amino acid residues were removed from the N terminus of ArgRS to form ArgRSΔN63; GlnRS formed GlnRSΔN198, and p43 formed p43ΔN106. GlnRSΔN198 had a much weaker affinity for its substrates, tRNAGln and glutamine. p43ΔN106 was the same as the previously reported p43-derived apoptosis-released factor. The formation of p43ΔN106 by calpain depended on Ca2+ and could be specifically inhibited by calpeptin and by RNAi of the regulatory subunit of calpain in vivo. These results showed, for the first time, that calpain plays an essential role in dissociating the MSC and might regulate the canonical and non-canonical functions of certain components of the MSC.  相似文献   

6.
Hughes SJ  Tanner JA  Miller AD  Gould IR 《Proteins》2006,62(3):649-662
We report molecular dynamics simulations of the Escherichia coli Lysyl-tRNA synthetase LysU isoform carried out as a benchmark for mutant simulations in in silico protein engineering efforts. Unlike previous studies of aminoacyl-tRNA synthetases, LysU is modelled in its full dimeric form with explicit solvent. While developing a suitable simulation protocol, we observed an asymmetry that persists despite improvements to the model. This prediction has directly led to experiments that establish a functional asymmetry in nucleotide binding by LysU. The development of a simulation protocol and validation of the model are presented here. The observed asymmetry is described and the role of protein flexibility in developing the asymmetry is discussed.  相似文献   

7.
A gene fusion event in the evolution of aminoacyl-tRNA synthetases   总被引:4,自引:0,他引:4  
The genes of glutamyl- and prolyl-tRNA synthetases (GluRS and ProRS) are organized differently in the three kingdoms of the tree of life. In bacteria and archaea, distinct genes encode the two proteins. In several organisms from the eukaryotic phylum of coelomate metazoans, the two polypeptides are carried by a single polypeptide chain to form a bifunctional protein. The linker region is made of imperfectly repeated units also recovered as singular or plural elements connected as N-terminal or C-terminal polypeptide extensions in various eukaryotic aminoacyl-tRNA synthetases. Phylogenetic analysis points to the monophyletic origin of this polypeptide motif appended to six different members of the synthetase family, belonging to either of the two classes of aminoacyl-tRNA synthetases. In particular, the monospecific GluRS and ProRS from Caenorhabditis elegans, an acoelomate metazoan, exhibit this recurrent motif as a C-terminal or N-terminal appendage, respectively. Our analysis of the extant motifs suggests a possible series of events responsible for a gene fusion that gave rise to the bifunctional glutamyl-prolyl-tRNA synthetase through recombination between genomic sequences encoding the repeated units.  相似文献   

8.
Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: D. Söll  相似文献   

9.
Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.  相似文献   

10.
We have constructed a model of the complex between tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus and tRNATyr by successive cycles of predictions, mutagenesis of TyrRS and molecular modeling. We confront this model with data obtained independently, compare it to the crystal structures of other complexes and review recent data on the discrimination between tRNAs by TyrRS. Comparison of the crystal structures of TyrRs and GlnRS, both of which are class I synthetases, and comparison of the identity elements of tRNATyr and tRNAGln indicate that the two synthetases bind their cognate tRNAs differently. The mutagenesis data on tRNATyr confirm the model of the TyrRS:tRNATyr complex on the following points. TyrRS approaches tRNATyr on the side of the variable loop. The bases of the first three pairs of the acceptor stem are not recognized. The presence of the NH2 group in position C6 and the absence of a bulky group in position C2 are important for the recognition of the discriminator base A73 by TyrRS, which is fully realized only in the transition state for the acyl transfer. The anticodon is the major identity element of tRNATyr. We have set up an in vivo approach to study the effects of synthetase mutations on the discrimination between tRNAs. Using this approach, we have shown that residue Glul52 of TyrRS acts as a purely negative discriminant towards non-cognate tRNAs, by electrostatic and steric repulsions. The overproductions of the wild type TyrRSs from E coli and B stearothermophilus are toxic to E coli, due to the mischarging or the non-productive binding of tRNAs. The construction of a family of hybrids between the TyrRSs from E coli and B stearothermophilus has shown that their sequences and structures have remained locally compatible through evolution, for holding and function, in particular for the specific recognition and charging of tRNATyr.  相似文献   

11.
The natural compound Microcin C (McC) is a Trojan horse inhibitor of aspartyl tRNA synthetases endowed with strong antibacterial properties, in which a heptapeptide moiety is responsible for active transport of the inhibitory metabolite part into the bacterial cell. The intracellularly formed aspartyl AMP analogue carries a chemically more stable phosphoramidate linkage, in comparison to the labile aspartyl-adenylate, and in addition is esterified with a 3-aminopropyl moiety. Therefore, this compound can target aspartyl-tRNA synthetase. The biochemical production and secretion of McC, and the possibilities to develop new classes of antibiotics using the McC Trojan horse concept in combination with sulfamoylated adenosine analogues will be discussed briefly.  相似文献   

12.
Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress.  相似文献   

13.
Literature data and authors' results on the structural and functional organization of the translation apparatus in higher eukaryotes are considered. Proofs are presented of the channeling of tRNA/aminoacyl-tRNA in the course of eukaryotic protein synthesis. The concept of the shuttle role of eEF1A is grounded; the factor, being in a GTP-bound form, delivers aminoacyl-tRNA to the ribosome and then, in the having undergone to a GDP -form after hydrolysis of GTP on the ribosome, forms a complex with the deacylated tRNA and delivers it to the aminoacyl-tRNA synthetase. The notion of a translational compartment is defined.  相似文献   

14.
Galani K  Hurt E  Simos G 《FEBS letters》2005,579(5):969-975
Arc1p, a yeast tRNA-binding protein, forms a complex with the aminoacyl-tRNA synthetases, methionyl tRNA synthetase (MetRS) and glutamyl tRNA synthetase (GluRS). Although this complex localizes normally in the cytoplasm, in the absence of Arc1p the two free synthetases are also found inside the nucleus. In this work, in order to localize free Arc1 we abolished complex assembly by deleting the appended domains from both MetRS and GluRS. Surprisingly, free Arc1p remained cytoplasmic even when fitted with a strong nuclear localization signal (NLS). However, NLS-Arc1p accumulated in the nucleus when Xpo1/Crm1, the export receptor for NES-containing cargo proteins, was mutated. Thus, the cytoplasmic location of Arc1p is maintained by Xpo1p-dependent nuclear export and Arc1p could act as an adapter in the nucleocytoplasmic trafficking of tRNA and/or the tRNA-aminoacylation machinery.  相似文献   

15.
析遗传密码子多态性之谜   总被引:4,自引:1,他引:3  
建立了1个由16个“3读2”原始密码子组成的系统。它们分为“语义确切”的,和“双义的”,两大类。后者,通过不同的分化方式,进一步分化为语义确切的“3读3”现代密码子;前者则无需再分化,仍保留着“3读2”原始形态,成为孑遗密码子。首次解释了氨基酸具有不同数目密码子,以及线粒体内存在反常密码子的多态性现象,初步建立了密码子进化树,并提出了原始氨酰基-tRNA合成酶可能在密码子进一步分化中起关键作用的观点。  相似文献   

16.
Each amino acid is attached to its cognate tRNA by a distinct aminoacyl-tRNA synthetase (aaRS). The conventional evolutionary view is that the modern complement of synthetases existed prior to the divergence of eubacteria and eukaryotes. Thus comparisons of prokaryotic and eukaryotic aminoacyl-tRNA synthetases of the same type (charging specificity) should show greater sequence similarities than comparisons between synthetases of different types—and this is almost always so. However, a recent study [Ribas de Pouplana L, Furgier M, Quinn CL, Schimmel P (1996) Proc Natl Acad Sci USA 93:166–170] suggested that tryptophanyl- (TrpRS) and tyrosyl-tRNA (TyrRS) synthetases of the Eucarya (eukaryotes) are more similar to each other than either is to counterparts in the Bacteria (eubacteria). Here, we reexamine the evolutionary relationships of TyrRS and TrpRS using a broader range of taxa, including new sequence data from the Archaea (archaebacteria) as well as species of Eucarya and Bacteria. Our results differ from those of Ribas de Pouplana et al.: All phylogenetic methods support the separate monophyly of TrpRS and TyrRS. We attribute this result to the inclusion of the archaeal data which might serve to reduce long branch effects possibly associated with eukaryotic TrpRS and TyrRS sequences. Furthermore, reciprocally rooted phylogenies of TrpRS and TyrRS sequences confirm the closer evolutionary relationship of Archaea to eukaryotes by placing the root of the universal tree in the Bacteria. Received: 7 December 1996 / Accepted: 11 February 1997  相似文献   

17.
A subset of eukaryotic aminoacyl-tRNA synthetases (a-RS) are contained in a multienzyme complex for which little structural detail is known. Three reversible chemical crosslinking reagents have been used to investigate the arrangement of polypeptides within this particle as isolated from rabbit reticulocytes. Identification of the crosslinked protein pairs was accomplished by two-dimensional SDS diagonal gel electrophoresis. Seventeen neighboring protein pairs have been identified. Eight are seen with at least two reagents: K-RS:p38, D-RS:K-RS, R-RS dimer, K-RS dimer, K-RS:Q-RS, E/P-RS:K-RS, E/P-RS:I-RS, and Q-RS with one of the nonsynthetase proteins. Nine more are observed with one reagent: D-RS dimer, R-RS:p43, D-RS:Q-RS, D-RS:M-RS, K-RS:L-RS, I-RS:R-RS, D-RS:E/P-RS, I-RS:Q-RS, I-RS:L-RS. One trimeric association is seen: E/P-RS:I-RS:L-RS. The observed neighboring protein pairs suggest that the polypeptides within the aminoacyl-tRNA synthetase complex are distributed in three structural domains of similar mass. These can be arranged in a U-shaped particle in which each "arm" is considered a domain and the third forms the "base" of the structure. The arms have been termed domain I (D-RS, M-RS, Q-RS) and domain II (K-RS, R-RS), with domain III (E/P-RS, I-RS, L-RS) assigned to the base. The smaller proteins (p38, p43) may bridge the domains. This proposed spatial relationship of these domains, as well as their compositions, are consistent with earlier studies. Thus, this study provides an initial three-dimensional working model of the arrangement of polypeptides within the multienzyme aminoacyl-tRNA synthetase complex.  相似文献   

18.
The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.  相似文献   

19.
Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and candidate targets for the design of treatments for pathogenic diseases.  相似文献   

20.
Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea, while none was found in Nanoarchaeum. The identified TK1s have high identity to Gram-positive bacteria TK1s. The TK1s from archaea, Gram-positive bacteria and eukaryotes share the same common ancestor, while the TK1s from Gram-negative bacteria belong to a less-related subgroup. It seems that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号