首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FEN-1 and XPG are members of the FEN-1 family of structure-specific nucleases, which share a conserved active site. FEN-1 plays a central role in DNA replication, whereas XPG is involved in nucleotide excision repair (NER). Both FEN-1 and XPG are active on flap structures, but only XPG cleaves bubble substrates. The spacer region of XPG is dispensable for nuclease activity on flap substrates but is required for NER activity and for efficient processing of bubble substrates. Here, we inserted the spacer region of XPG between the nuclease domains of FEN-1 to test whether this domain would be sufficient to confer XPG-like substrate specificity and NER activity on a related nuclease. The resulting FEN-1-XPG hybrid protein is active on flap and, albeit at low levels, on bubble substrates. Like FEN-1, the activity of FEN-1-XPG was stimulated by a double-flap substrate containing a 1-nt 3′ flap, whereas XPG does not show this substrate preference. Although no NER activity was detected in vitro, the FEN-1-XPG hybrid displays substantial NER activity in vivo. Hence, insertion of the XPG spacer region into FEN-1 results in a hybrid protein with biochemical properties reminiscent of both nucleases, including partial NER activity.  相似文献   

2.
XPG is the human endonuclease that cuts 3' to DNA lesions during nucleotide excision repair. Missense mutations in XPG can lead to xeroderma pigmentosum (XP), whereas truncated or unstable XPG proteins cause Cockayne syndrome (CS), normally yielding life spans of <7 years. One XP-G individual who had advanced XP/CS symptoms at 28 years has been identified. The genetic, biochemical, and cellular defects in this remarkable case provide insight into the onset of XP and CS, and they reveal a previously unrecognized property of XPG. Both of this individual's XPG alleles produce a severely truncated protein, but an infrequent alternative splice generates an XPG protein lacking seven internal amino acids, which can account for his very slight cellular UV resistance. Deletion of XPG amino acids 225 to 231 does not abolish structure-specific endonuclease activity. Instead, this region is essential for interaction with TFIIH and for the stable recruitment of XPG to sites of local UV damage after the prior recruitment of TFIIH. These results define a new functional domain of XPG, and they demonstrate that recruitment of DNA repair proteins to sites of damage does not necessarily lead to productive repair reactions. This observation has potential implications that extend beyond nucleotide excision repair.  相似文献   

3.
In mammalian cells, the core factors involved in the damage recognition and incision steps of DNA nucleotide excision repair are XPA, TFIIH complex, XPC-HR23B, replication protein A (RPA), XPG, and ERCC1-XPF. Many interactions between these components have been detected, using different physical methods, in human cells and for the homologous factors in Saccharomyces cerevisiae. Several human nucleotide excision repair (NER) complexes, including a high-molecular-mass repairosome complex, have been proposed. However, there have been no measurements of activity of any mammalian NER protein complex isolated under native conditions. In order to assess relative strengths of interactions between NER factors, we captured TFIIH from cell extracts with an anti-cdk7 antibody, retaining TFIIH in active form attached to magnetic beads. Coimmunoprecipitation of other NER proteins was then monitored functionally in a reconstituted repair system with purified proteins. We found that all detectable TFIIH in gently prepared human cell extracts was present in the intact nine-subunit form. There was no evidence for a repair complex that contained all of the NER components. At low ionic strength TFIIH could associate with functional amounts of each NER factor except RPA. At physiological ionic strength, TFIIH associated with significant amounts of XPC-HR23B and XPG but not other repair factors. The strongest interaction was between TFIIH and XPC-HR23B, indicating a coupled role of these proteins in early steps of repair. A panel of antibodies was used to estimate that there are on the order of 10(5) molecules of each core NER factor per HeLa cell.  相似文献   

4.
5.
6.
7.
In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause an early onset of Cockayne syndrome (CS) in some patients (XP-G/CS) with characteristics, such as growth retardation and a short life span. In the previous studies, we generated four Xpg mutant mice with two different C-terminal truncations, null, or a base substitution mutation to identify the protein region that causes the onset of CS, and found that the CS-causing mutations, null or a deletion of the last 360 amino acids, completely inhibited the NER activity of mouse XPG (Xpg), but the non-CS-causing mutations, XpgD811A (base substitution that eliminates the nuclease activity of Xpg) or XpgDeltaex15 (deletion of the exon 15 corresponding to the last 183 amino acids), resulted in the retention of residual NER activity. To understand why mutations that completely eliminate the NER activity of Xpg cause CS but those that abolish the nuclease activity without totally eliminating the NER activity of Xpg do not result in CS, we made a series of Xpg mutant mice with Xpa-null mutant allele and found that mice with the non-CS-causing deletion mutation (XpgDeltaex15) exhibited the CS phenotype when XPA was also absent but the base substitution mutation (XpgD811A) that eliminated the Xpg nuclease activity did not. These results indicate that Xpg has a second function, beside NER, and that the disruption of this second function (deletion of the last 183 amino acids) when combined with an NER defect causes CS. When we compared amino acid sequences corresponding to the exon 15 of Xpg, a significant homology was conserved among vertebrates, but not in Drosophila and Saccharomyces cerevisiae. These observations suggest that the second function of XPG may be conserved only in vertebrates and CS symptoms may occur in its absence.  相似文献   

8.
The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3' side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5' incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process.  相似文献   

9.
Riedl T  Hanaoka F  Egly JM 《The EMBO journal》2003,22(19):5293-5303
  相似文献   

10.
11.
12.
13.
14.
In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position -3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position -6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position -19 to +8. XPG and XPF/ERCC1 endonucleases then cut the damaged DNA at the limit of the opened structure that was previously "labeled" by the positioning of XPC/HR23B and TFIIH.  相似文献   

15.
16.
17.
Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of γH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.  相似文献   

18.
19.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号