共查询到20条相似文献,搜索用时 31 毫秒
1.
A Model to Investigate the Effect of Evaporative Cooling on the Pattern of Evaporation in Sub-stomatal Cavities 总被引:2,自引:1,他引:1
A model has been developed to investigate the pattern of waterevaporation from sub-stomatal cavities. In this model equationsfor the flux of matter are coupled to equations for the fluxof heat. Failure to couple heat and mass transfer processesin previous models may have led to erroneous conclusions regardingthe pattern of evaporation in sub-stomatal cavities. Our model predicts that the coolest surfaces are likely to be0.10.4 °C cooler than the warmest surfaces. Evaporativecooling does alter the pattern of evaporation in sub-stomatalcavities, yet 63 to 80 per cent of all evaporation still occursfrom a peristomatal region occupying about 4 per cent of thetotal sub-stomatal surface area. stomata, sub-stomatal cavities, transpiration, peristomatal evaporation, evaporative cooling 相似文献
2.
Transpiration measurements of two alpine tundra species, Deschampsia caespitosa and Geum rossii, and two arctic tundra species, Dupontia fischeri and Carex aquatilis, were conducted under varying atmospheric and soil moisture stress regimes to determine if the stomatal response to water stress may play a role in the local distributions of these species. Under low soil moisture stress, stomata of the species restricted typically to wet meadow areas, Deschampsia and Dupontia, did not exhibit closure until leaf water potential declined. However, when soil moisture stress was low and atmospheric stress increased, Geum and particularly Carex exhibited partial stomatal closure before leaf water potential dropped, suggesting a direct response of the stomata to the vapor pressure gradient between the leaf and the atmosphere. Lower liquid phase water transport resistance from the soil to the leaves may also reduce the development of leaf moisture stress in Geum. Furthermore, Geum and possibly Carex appeared to undergo less of a loss of leaf turgor when leaf water potential decreased. This response may serve to maintain leaf cell turgor and to abate the reduction in leaf enlargement. 相似文献
3.
The Stomatal characteristics of two maize varieties previouslyfound to differ in rates of net photosynthesis were examinedin a controlled environment. Measurements with a ventilateddiffusion porometer showed that one variety exhibited a pronouncedand the other a weak periodicity in stomatal resistance of theadaxial epidermis. At equal illumination the stomatal resistanceof the adaxial epidermis decreased from upper to lower leaves,while the resistance of the abaxial epidermis changed in theopposite manner. Stomata on the adaxial and abaxial surfacesof maize leaves exhibited random not compensatory, movementsin a constant environment. The variety with the lesser stomatalfrequency and higher total leaf resistance to water loss hadnevertheless faster net photosynthesis than the variety withthe greater stomatal frequency, demonstrating the importanceof the so-called mesophyll resistance. 相似文献
4.
Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut 总被引:14,自引:0,他引:14
下载免费PDF全文

The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia x nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Psisoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (P(rachis)) above -1.4 MPa and the leaf water potential (Psileaf) above -1.6 MPa. The same dependence of Eplant and gs on P(rachis) or Psileaf was always observed. This suggested that stomata were not responding to changes in Psisoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on P(rachis) and/or Psileaf. Leaf rachis was the most vulnerable organ, with a threshold P(rachis) for embolism induction of -1.4 MPa. The minimum Psileaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that P(rachis) might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. 相似文献
5.
小麦和大豆叶片的气孔不均匀关闭现象 总被引:9,自引:0,他引:9
用14CO2放射自显影的方法研究了田间小麦和大豆叶片在水分胁迫下的气孔关闭状况。正常浇水的小麦和大豆叶片呈现出对14CO2的均匀吸收。在小麦与大豆"片水势分别降至-1.75和-1.32MPa的土壤干旱条件下,两种作物叶片都发生气孔不均匀关闭。离休叶片在空气中快速脱水易引起气孔不均匀关闭。正常供水小麦叶片在晴天中午明显的光合午休时,无CO2的不均匀吸收。某些晴天中午,在大豆光合午休低谷时段观察到较明显的气孔不均匀关闭,用气体交换资料计算出的细胞间隙CO2浓度并不随气孔年度的降低而下降,反而略有回升。 相似文献
6.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water. 相似文献
7.
一氧化氮在乙烯诱导蚕豆气孔关闭中的作用 总被引:3,自引:0,他引:3
以蚕豆为材料研究了一氧化氮(nitric oxide,NO)和乙烯对气孔运动的影响。结果表明,10μmol/L的NO供体硝普钠(sodium nitroprusside,SNP)以及0.04%的乙烯能明显诱导蚕豆气孔关闭,并且二者共同处理后,能够增强其促进气孔关闭的作用。乙烯合成抑制剂AVG可以减弱NO诱导气孔关闭的程度,NO清除剂c-PTIO和NR抑制剂NaN3也可减弱乙烯诱导气孔关闭的程度,而一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME对乙烯诱导气孔关闭的作用不明显。推测,在调控蚕豆气孔关闭过程中,NO可能主要通过NR途径参与乙烯调控气孔关闭过程。 相似文献
8.
Positive and Negative Messages from Roots Induce Foliar Desiccation and Stomatal Closure in Flooded Pea Plants 总被引:7,自引:0,他引:7
Flooding the soil for 57 d caused partial desiccationin leaves of pea plants (Pisum sativum. L. cv. Sprite).The injury was associated with anaerobiosis in the soil, a largeincrease in the permeability of leaf tissue to electrolytesand other substances, a low leaf water content and an increasedwater saturation deficit (WSD). Desiccating leaves also lackedthe capacity to rehydrate in humid atmospheres, a disabilityexpressed as a water resaturation deficit (WRSD). This irreversibleinjury was preceded during the first 45 d of floodingby closure of stomata within 24 h, decreased transpiration,an unusually large leaf water content and small WSD. Leaf waterpotentials were higher than those in well-drained controls.Also, there was no appreciable WRSD. Leaflets detached fromflooded plants during this early phase retained their watermore effectively than those from controls when left exposedto the atmosphere for 5 min. Stomatal closure and the associated increase in leaf hydrationcould be simulated by excising leaves and incubating them withtheir petioles in open vials of water. Thus, such changes inflooded plants possibly represented a response to a deficiencyin the supply of substances that would usually be transportedfrom roots to leaves in healthy plants (negative message). Ionleakage and the associated loss of leaf hydration that occurswhen flooding is extended for more than 5 d could not be simulatedby isolating the leaves from the roots. Appearance of this symptomdepended on leaves remaining attached to flooded root systems,implying that the damage is caused by injurious substances passingupwards (positive message). Both ethylene and ethanol have beeneliminated as likely causes, but flooding increased phosphorusin the leaves to concentrations that may be toxic. Key words: Pisum sativum, Flooding, Foliar desiccation, Stomata, Ethylene 相似文献
9.
Water Supply, Evaporation, and Vapour Diffusion in Leaves 总被引:11,自引:1,他引:11
On the basis of experimental results published during the last25 years, but more particularly during the last 5 years andincluding some results presented here, the hypothesis is proposedthat an important portion of the water supply from major veinsin leaves travels within the epidermal tissue to sites of evaporationclose to the stomatal pores. These evaporation sites are innerepidermal walls especially subsidiary and guard cell walls becausethese are closest to air spaces with the highest water vapourdeficits. Less water than is traditionally supposed evaporatesfrom mesophyll cell walls. Low osmotic potentials of guard cells(large negative) are not required in building up high turgorpressures. However, they are required in competing for wateragainst the process of evaporation which causes low matric potentialsto develop in subsidiary and guard cell walls so that guardcolls can maintain the comparatively low turgor pressures whichhave been shown to operate the stomatal apparatus. Traditionalviews about leaf water relations and methods of estimating mesophyllresistances for carbon dioxide diffusion into leaves must bemodified. 相似文献
10.
Ca2+在茉莉酸甲酯诱导拟南芥气孔关闭中的信号转导作用 总被引:8,自引:0,他引:8
以拟南芥叶片下表皮为材料 ,分别用表皮生物分析法和激光扫描共聚焦显微镜成像技术 ,研究茉莉酸甲酯 (JA Me)促进气孔关闭过程中胞质Ca2 浓度的变化及其与气孔关闭的关系。结果表明 ,10 - 7到 10 - 3mol L的JA Me处理能促进拟南芥叶片的气孔关闭 ,其中 ,10 - 5mol L是最适浓度。用 10 - 5mol L的JA Me处理5min ,胞质Ca2 浓度从静息态的 10 5nmol L增加到 332 0nmol L ;质膜Ca2 通道阻断剂LaCl3和Ca2 螯合剂EGTA均能明显地降低JA Me对气孔关闭的促进作用。由此推测 ,胞质Ca2 可能是JA Me促进气孔关闭的重要信号转导因子 相似文献
11.
过氧化氢在水杨酸诱导的蚕豆气孔关闭中的作用 总被引:9,自引:0,他引:9
许多植物病原菌可通过气孔进入叶片组织,因此减小气孔开度有利于提高植物的抗性。我们通过表皮条分析和激光扫描共聚显微镜得到的证据表明在保卫细胞中过氧化氢可能是水杨酸信号的中间环节。SA可以浓度依赖的方式诱导气孔关闭(图1A),H2O2也有类似的作用(图1B)。100μmol/L的水杨酸诱导的气孔关闭作用可明显地被20U/ml的过氧化氢酶或10μmol/L的Vc逆转,但CAT和Vc单独处理时诱导气孔开放的作用很微弱。单细胞中基于荧光探针DCFH的时间进程实验表明直接外加(图版I)或显微注射100μmol/L的SA均可诱导保卫细胞中H2O2产生,但以显微注射双蒸水作为对照时对DCFH荧光无影响(图版II)。这些结果暗示了植物被病原菌感染时可能通过产生H2O2导致气孔关闭而阻止病原菌继续通过气孔侵入。 相似文献
12.
Keina Monda Hiromitsu Araki Satoru Kuhara Genki Ishigaki Ryo Akashi Juntaro Negi Mikiko Kojima Hitoshi Sakakibara Sho Takahashi Mimi Hashimoto-Sugimoto Nobuharu Goto Koh Iba 《Plant physiology》2016,170(3):1435-1444
The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant’s gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.Gas exchange is a vital activity for higher plants that take up atmospheric CO2 and release oxygen and water vapor through epidermal stomatal pores. Gas exchange affects CO2 uptake, photosynthesis, and biomass production (Horie et al., 2006; Evans et al., 2009; Tanaka et al., 2014). Stomatal conductance (gs) is used as an indicator of gas-exchange capacity (Franks and Farquhar, 2007). Maximum stomatal conductance (gsmax) is controlled mainly by stomatal size and density, two parameters that change with environmental conditions and are negatively correlated with each other (Franks et al., 2009).Given a constant total stomatal pore area, large stomata are generally disadvantageous for gas exchange compared with smaller stomata, because the greater pore depth in larger stomata increases the distance that gas molecules diffuse through. This increased distance is inversely proportional to gsmax (Franks and Beerling, 2009). The fossil record indicates that ancient plants had small numbers of large stomata when atmospheric CO2 levels were high, and falling atmospheric [CO2] induced a decrease in stomatal size and an increase in stomatal density to increase gs for maximum carbon gain (Franks and Beerling, 2009). The positive relationship between a high gs and numerous small stomata also holds true among plants living today under various environmental conditions (Woodward et al., 2002; Galmés et al., 2007; Franks et al., 2009). Additionally, the large stomata of several plant species (e.g. Vicia faba and Arabidopsis [Arabidopsis thaliana]) are often not effective for achieving rapid changes in gs, due to slower solute transport to drive movement caused by their lower membrane surface area-to-volume ratios (Lawson and Blatt, 2014).Stomatal size is strongly and positively correlated with genome size (Beaulieu et al., 2008; Franks et al., 2012; Lomax et al., 2014). Notably, polyploidization causes dramatic increases in nucleus size and stomatal size (Masterson, 1994; Kondorosi et al., 2000). In addition to the negative effects of large stomata on gas exchange (Franks et al., 2009), polyploids may have another disadvantage; del Pozo and Ramirez-Parra (2014) showed that artificially induced tetraploids of Arabidopsis have a reduced stomatal density (stomatal number per unit of leaf area) and a lower stomatal index (stomatal number per epidermal cell number). Moreover, tetraploids of Rangpur lime (Citrus limonia) and Arabidopsis have lower transpiration rates and changes in the expression of genes involved in abscisic acid (ABA), a phytohormone that induces stomatal closure (Allario et al., 2011; del Pozo and Ramirez-Parra, 2014). On the other hand, an increase in the ploidy level of Festuca arundinacea results in an increase in the CO2-exchange rate (Byrne et al., 1981); hence, polyploids may not necessarily have a reduced gas-exchange capacity.Natural accessions provide a wide range of information about mechanisms for adaptation, regulation, and responses to various environmental conditions (Bouchabke et al., 2008; Brosché et al., 2010). Arabidopsis, which is distributed widely throughout the Northern Hemisphere, has great natural variation in stomatal anatomy (Woodward et al., 2002; Delgado et al., 2011). Recently, we investigated leaf temperature changes in response to [CO2] in a large number of Arabidopsis ecotypes (374 ecotypes; Takahashi et al., 2015) and identified the Mechtshausen (Me-0) ecotype among ecotypes with low CO2 responsiveness; Me-0 had a comparatively low leaf temperature, implying a high transpiration rate. In this study, we revealed that Me-0 had a higher gs than the standard ecotype Columbia (Col), despite having tetraploid-dependent larger stomata. Notably, the gs of Me-0 was also higher than that of tetraploid Col, which has stomata as large as those of Me-0. This finding resulted from Me-0 having a higher gs-to-gsmax ratio due to more opened stomata than tetraploid Col. In addition, there were differences in ABA responsiveness, ion homeostasis, and gene expression profiles in guard cells between Me-0 and tetraploid Col, which may influence their stomatal opening. Despite the common trend of smaller stomata with higher gas-exchange capacity, the results with Me-0 confirm the theoretical possibility that larger stomata can also achieve higher stomatal conductance if pore area increases sufficiently. 相似文献
13.
Abstract Evaporation and condensation processes at a liquid surface of methanol were investigated at room temperature with a microcanonical molecular dynamics computer simulation technique. The condensation coefficient (the number ratio of condensed molecules to incident ones) was estimated by comparing two types of autocorrelation functions, and found to be less than unity, which is in qualitative agreement with experiments. A variety of complex dynamic phenomena were observed at the surface. 相似文献
14.
Relationship of Xylem Embolism to Xylem Pressure Potential, Stomatal Closure, and Shoot Morphology in the Palm Rhapis excelsa 总被引:9,自引:1,他引:9
下载免费PDF全文

Sperry JS 《Plant physiology》1986,80(1):110-116
Xylem failure via gas embolism (cavitation) induced by water stress was investigated in the palm Rhapis excelsa (Thumb.) Henry. Xylem embolism in excised stems and petioles was detected using measurements of xylem flow resistance: a decrease in resistance after the removal of flow-impeding embolisms by a pressure treatment indicated their previous presence in the axis. Results supported the validity of the method because increased resistance in an axis corresponded with: (a) induction of embolism by dehydration, (b) increased numbers of cavitations as detected by acoustic means, (c) presence of bubbles in xylem vessels. The method was used to determine how Rhapis accommodates embolism; results suggested four ways. (a) Embolism was relatively rare because pressure potentials reach the embolism-inducing value of about −2.90 megapascals only during prolonged drought. (b) When embolism did occur in nature, it was confined to the relatively expendable leaf xylem; the stem xylem, which is critical for shoot survival, remained fully functional. (c) Even during prolonged drought, the extent of embolism is limited by complete stomatal closure, which occurred at the xylem pressure potential of −3.20 ± 0.18 megapascals. (d) Embolism is potentially reversible during prolonged rains, since embolisms dissolved within 5 h at a pressure potential of 0.00 megapascals (atmospheric), and xylem sap can approach this pressure during rain. 相似文献
15.
The control of gaseous exchange between the leaf and bulk atmosphere by stomata governs CO2 uptake for photosynthesis and transpiration, determining plant productivity and water use efficiency. The balance between these two processes depends on stomatal responses to environmental and internal cues and the synchrony of stomatal behavior relative to mesophyll demands for CO2. Here we examine the rapidity of stomatal responses with attention to their relationship to photosynthetic CO2 uptake and the consequences for water use. We discuss the influence of anatomical characteristics on the velocity of changes in stomatal conductance and explore the potential for manipulating the physical as well as physiological characteristics of stomatal guard cells in order to accelerate stomatal movements in synchrony with mesophyll CO2 demand and to improve water use efficiency without substantial cost to photosynthetic carbon fixation. We conclude that manipulating guard cell transport and metabolism is just as, if not more likely to yield useful benefits as manipulations of their physical and anatomical characteristics. Achieving these benefits should be greatly facilitated by quantitative systems analysis that connects directly the molecular properties of the guard cells to their function in the field.In order for plants to function efficiently, they must balance gaseous exchange between inside and outside the leaf to maximize CO2 uptake for photosynthetic carbon assimilation (A) and to minimize water loss through transpiration. Stomata are the “gatekeepers” responsible for all gaseous diffusion, and they adjust to both internal and external environmental stimuli governing CO2 uptake and water loss. The pathway for CO2 uptake from the bulk atmosphere to the site of fixation is determined by a series of diffusional resistances, which start with the layer of air immediately surrounding the leaf (the boundary layer). Stomatal pores provide a major resistance to flux from the atmosphere to the substomatal cavity within the leaf. Further resistance is encountered by CO2 across the aqueous and lipid boundaries into the mesophyll cell and chloroplasts (mesophyll resistance). Water leaving the leaf largely follows the same pathway in reverse, but without the mesophyll resistance component. Guard cells surround the stomatal pore. They increase or decrease in volume in response to external and internal stimuli, and the resulting changes in guard cell shape adjust stomatal aperture and thereby affect the flux of gases between the leaf internal environment and the bulk atmosphere. Stomatal behavior, therefore, controls the volume of CO2 entering the intercellular air spaces of the leaf for photosynthesis. It also plays a key role in minimizing the amount of water lost. Transpiration, by virtue of the concentration differences, is an order of magnitude greater than CO2 uptake, which is an inevitable consequence of free diffusion across this pathway. Although the cumulative area of stomatal pores only represents a small fraction of the leaf surface, typically less than 3%, some 98% of all CO2 taken up and water lost passes through these pores. When fully open, they can mediate a rate of evaporation equivalent to one-half that of a wet surface of the same area (Willmer and Fricker, 1996).Early experiments illustrated that photosynthetic rates were correlated with stomatal conductance (gs) when other factors were not limiting (Wong et al., 1979). Low gs limits assimilation rate by restricting CO2 diffusion into the leaf, which, when integrated over the growing season, will influence the carbohydrate status of the leaf with consequences for crop yield. Stomata of well-watered plants are thought to reduce photosynthetic rates by about 20% in most C3 species and by less in C4 plants in the field (Farquhar and Sharkey, 1982; Jones, 1987). However, even this restriction has been shown to impact substantially on yield. For example, Fischer et al. (1998) demonstrated a close correlation between gs and yield in eight different wheat (Triticum aestivum) cultivars. Those studies highlighted the effects gs can have on crop yield, not only through reduced CO2 diffusion but also through the impact on water loss and evaporative cooling of the leaf. Indeed, enhancing photosynthesis yields by only 2% to 3% is sufficient to substantially increase plant growth and biomass over the course of a growing season (Lefebvre et al., 2005; Zhu et al., 2007).Stomata and their behavior profoundly affect the global fluxes of CO2 and water, with an estimated 300 × 1015 g of CO2 and 35 × 1018 g of water vapor passing through stomata of leaves every year (Hetherington and Woodward, 2003). Changes in stomatal behavior in response to changing climatic conditions are thought to impact on water levels and fluxes. For example, it is estimated that partial stomatal closure driven by increasing CO2 concentration over the past two decades has led to increased CO2 uptake and reduced evapotranspiration in temperate and boreal northern hemisphere forests (Keenan et al., 2013), with implications for continental runoff and freshwater availability associated with the global rise in CO2 (Gedney et al., 2006). Concurrently, the increase in global water usage over the past 100 years and the expectation that this is set to double before 2030 (UNESCO, 2009) has put pressure on breeders and scientists to find new crop varieties, breeding traits, or potential targets for manipulation that would result in crop plants that are able to sustain yield with less water input. The fact that stomata are major players in plant water use and the entire global water cycle makes the functional and physical attributes of stomata potential targets for manipulation to improve carbon gain and plant productivity as well as global water fluxes.There are several approaches for improving carbon gain and plant water use efficiency (WUE) that focus on stomata. It is possible to increase or decrease the gaseous conductance of the ensemble of stomata per unit of leaf area (gs) through the manipulation of stomatal densities (Büssis et al., 2006). In addition, there is potential to alter the stomatal response or sensitivity to environmental signals through the manipulation of guard cell characteristics that affect stomatal mechanics (e.g. OPEN STOMATA [ost] mutants; Merlot et al., 2002). Such approaches have produced an array of mutant plants with altered characteristics and varying impacts on CO2 uptake and transpiration, several of which we discuss in greater detail below. An intuitive measure of the efficacy of such manipulations is the WUE, commonly defined as the amount of carbon fixed in photosynthesis per unit of water transpired. In general, higher WUE values have been observed in plants with lower gs, but these gains are usually achieved together with a reduction in A and slower plant growth. Plants with higher gs have greater assimilation rates and grow faster under optimal conditions, but they generally exhibit lower WUE. An approach that has not been fully explored or considered in any depth is to select plants for differences in the kinetics of stomatal response or to manipulate stomatal kinetics in ways that improve the synchrony with mesophyll CO2 demand (Lawson et al., 2010, 2012). To date, the majority of studies assessing the impact of stomatal behavior on photosynthetic carbon gain have focused on steady-state measurements of gs in relation to photosynthesis. These studies do not take account of the dynamic situation in the field. As we discuss below, a cursory analysis of stomatal synchrony with mesophyll CO2 demand suggests that gains of 20% to 30% are theoretically possible.Here, we address the question of the kinetics of the stomatal response to the naturally fluctuating environment, notably to fluctuations in light that are typical of the conditions experienced in the field. We focus on vascular seed plants, to which crop plants belong, and do not address seedless vascular plants, such as ferns. The characteristics of the latter, and hence the issues and challenges they present, are very different. In our minds, of paramount importance is whether there is potential for engineering guard cells of crop plants to manipulate the dynamic behavior of stomata so as to improve WUE without substantial cost in assimilation. Of course, in many circumstances, stomata are not the only factor to limit water flux through the plant (see other articles in this issue), but they are one of the most important “gatekeepers” and therefore, serve as a good starting point for such considerations. Thus, we explore the physical and functional attributes of stomata, their signaling, and the solute transport mechanisms that determine pore aperture as targets for potential manipulation of stomatal responses to changing environmental cues. 相似文献
16.
Ineffectiveness of Abscisic Acid in Stomatal Closure of Yellow Lupin, Lupinus luteus var. Weiko III 总被引:4,自引:0,他引:4
Stomata of yellow lupin leaves are remarkably insensitive toabscisic acid (ABA). Stomatal resistance was monitored usingboth a viscous now porometer and a diffusion porometer. Resultswere confirmed with scanning electron microscopy. When exogenousABA solutions were supplied via petioles, 106 M solutionshad no effect on stomatal resistance. Upper (adaxial) stomatawere not affected by 105 M ABA but lower stomata showed3-fold more resistance after 2 h. Stomata of both surfaces closedafter 30 min in 104 M ABA. Isolated epidermal peels of lupin leaves were floated on ABAsolutions yet upper surface peels showed no stomatal closingin 104 M ABA, while lower surface stomata closed to abarely significant extent. Stomata of intact leaves were not very sensitive to darkness,showing at most a doubling in resistance after 6 h darkness.Complete stomatal closure, however, was readily produced bywilting leaves. Hence, lupin stomata are physically capableof closing. Endogenous ABA levels of water-stressed leaves increased approximately10-fold, which corresponds to concentrations below 10 µMABA. It is concluded that ABA is unlikely to play a role incontrolling short-term stomatal response of lupins. 相似文献
17.
Barbara Bellich Massimiliano Borgogna Michela Cok Attilio Ces��ro 《Food biophysics》2011,6(2):259-266
Encapsulation in alginate hydrogels has been extensively used for several applications in food, pharmaceutical, and biomedical fields. The rational design of a functional polymer network is based on the identification of key parameters and mechanisms governing rate and extent of release of the immobilized molecular species. In the present work, a calorimetric study of the water evaporation under non-isothermal conditions is aimed at evaluating functional properties of a series of alginate-based gel beads. The experiments show how a number of variables, such as scan rate, calcium and alginate concentration, operational procedures, and addition of biopolymer co-solutes influence the temperature evolution of the water evaporation from beads. Given the simplicity and the rapidity of the calorimetric experiment, the issue is raised that a scaling approach could be reached by using water as reference material for the prediction of the diffusion kinetics of encapsulated molecules of variable size and properties. 相似文献
18.
Leaf Age as a Determinant in Stomatal Control of Water Loss from Cotton during Water Stress 总被引:1,自引:8,他引:1
下载免费PDF全文

The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress. 相似文献
19.
Functional Convergence of Oxylipin and Abscisic Acid Pathways Controls Stomatal Closure in Response to Drought 总被引:2,自引:0,他引:2
Tatyana Savchenko Venkat A. Kolla Chang-Quan Wang Zainab Nasafi Derrick R. Hicks Bpantamars Phadungchob Wassim E. Chehab Federica Brandizzi John Froehlich Katayoon Dehesh 《Plant physiology》2014,164(3):1151-1160
Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, “oxylipins.” We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.To colonize a diverse range of environments successfully, plants have developed converging functional pathways to synthesize an array of secondary metabolites for their protection against hostile conditions. For example, in response to environmental challenges, the oxylipin pathway induces the de novo synthesis of biologically active compounds called “oxylipins,” derivatives of oxygenated polyunsaturated fatty acids (Feussner and Wasternack, 2002; Howe and Schilmiller, 2002). Among the oxylipin pathways, the enzymes allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are considered to partition two major branches that compete for the same substrates and are critical plant stress response pathways (Chehab et al., 2008).Production of the AOS pathway metabolites 12-oxo-phytodienoic acid (12-OPDA) and jasmonic acid (JA) originates from α-linolenic acid of chloroplast membranes (Feussner and Wasternack, 2002). Oxygenation of α-linolenic acid by a 13-lipoxygenase followed by the action of AOS forms an unstable allene oxide that is subsequently cyclized by an allene oxide cyclase to form 12-OPDA (Stenzel et al., 2012). 12-OPDA is the end product of the plastid-localized part of the pathway (Stintzi and Browse, 2000; Schaller and Stintzi, 2009). 12-OPDA is then translocated to the peroxisome where it is reduced by 12-OPDA reductase3 (OPR3) and subsequently activated by CoA ester prior to undergoing three rounds of β-oxidation to form JA (Schaller et al., 2000; Koo et al., 2006; Kienow et al., 2008). 12-OPDA is also a signaling molecule with both overlapping and distinct functions from JA. The Arabidopsis (Arabidopsis thaliana) opr3 mutant is deficient in JA synthesis but accumulates 12-OPDA and displays wild-type resistance to the dipteran Bradysia impatiens and to the fungal pathogen Alternaria brassicicola, generally considered JA-dependent responses (Stintzi et al., 2001). In addition, expression studies have identified genes induced by 12-OPDA but not by JA or methyl jasmonate (MeJA; Kramell et al., 2000; Stintzi et al., 2001; Taki et al., 2005; Ribot et al., 2008). These studies collectively show that 12-OPDA mediates gene expression with or without the canonical JA signaling framework (Stintzi et al., 2001; Taki et al., 2005; Ribot et al., 2008).The HPL branch of the oxylipin pathway produces aldehydes and corresponding alcohols. The first enzyme in the pathway is encoded by one or more HPL genes, differing in their subcellular localization, including microsomes (Pérez et al., 1999), lipid bodies (Mita et al., 2005), and the outer envelope of chloroplasts (Froehlich et al., 2001), and in some cases, with no specific localization in a particular organelle (Noordermeer et al., 2000). This variation in the number of genes and subcellular localization of their encoded enzymes is suggestive of the differential regulation of this pathway and, ultimately, the diversity of their responses, potentially tailored to the nature of stimuli.We have previously identified three rice (Oryza sativa) HPLs (HPL1 through HPL3) differing in their enzyme kinetics and substrate preference. Expression of these enzymes in Arabidopsis accession Columbia (Col-0), a natural hpl loss-of-function mutant, reestablished the production of the pathway metabolites (Chehab et al., 2006) and revealed the key role of HPL-derived metabolites in plant stress signaling (Chehab et al., 2008).The HPL and AOS branches of the oxylipin pathway do not function independently; the signaling crosstalk between them is key to fine tuning plant adaptive responses to a diverse range of perturbations (Halitschke et al., 2004; Liu et al., 2012; Scala et al., 2013).To gain deeper insight into the role of AOS- and HPL-derived metabolites in fine-tuning plant stress responses, we have (1) characterized the corresponding oxylipin signatures in response to wounding and drought in three Arabidopsis ecotypes, (2) generated a range of transgenic lines that produce varying blends of oxylipins tailored to the nature of the stress, (3) elucidated a JA-independent role for 12-OPDA in enhanced drought tolerance in part via regulation of stomatal aperture, and (4) reexamined the 12-OPDA-mediated regulation of stomatal aperture, alone or in combination with abscisic acid (ABA) in the model system Arabidopsis as well as in two crop species, namely tomato (Solanum lycopersicum) and Brassica napus. Unexpectedly, these analyses have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed that 12-OPDA is a previously unrecognized regulator of stomatal closure in response to drought. This function of 12-OPDA, however, is most effective when combined with ABA, a phytohormone known to be essential for plant-adaptive responses to drought stress (Seki et al., 2007). 相似文献
20.
The Water Relations of Young Olive Trees in a Mediterranean Winter: Measurements of Evaporation from Leaves and Water Conduction in Wood 总被引:1,自引:0,他引:1
We report measurements of evaporation rate, leaf resistanceto evaporation and water conduction in the stems of young olivetrees (Olea europea L.) growing in Messina, Italy, during thewinter and early spring. We have measured what Zimmermann callsleaf specific conductivity (LSC) of stem segmentsexcised from olive trees. The LSC is a measure of the specifichydraulic conductivity of stem segments normalized per unitarea of leaves supplied by the stem segment rather than perunit area of sapwood cross-sectional area. We find that theLSC's of primary stems were the largest followed in magnitudeby the LSC's of secondary stems and tertiary stems. Under winterand early spring conditions the maximum evaporative flux fromCoratina and Nocellara varieties of olive trees is about 2.6x 105 kg 81 m2. From this and the LSC measurementswe calculate that the pressure gradients needed to maintainthis rate of evaporation in the steady state is 65 kPa m1in primary stems, 170 kPa m1 in secondary stems and 560kPa m1 in tertiary stems. Olive, Olea europea L, evaporation, leaf specific conductivity, hydraulic conductivity, leaf resistance 相似文献