首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AIMS: In this study, the relationship between morphology and cephalosporin C (CPC) production in a 30-l bioreactor culture of Cephalosporium acremonium M25 using a 3:7 seed mixture was investigated. In addition, the kinetic model was established and applied. METHODS AND RESULTS: CPC production was performed in a 30-l bioreactor using a 3:7 seed mixture. It was recognized that a 3:7 seed mixture was able to reduce lag phase and enhance CPC production. The maximum CPC production and cell mass were 1.96 and 81.5 g l-1 respectively. Through a morphology study by observation using image analysis, it was concluded that changes of morphological features predicted the progressive production of CPC and that a morphology study could be useful in monitoring the CPC fermentation by C. acremonium M25. In the kinetics study, a kinetic model of CPC fermentation was developed and applied. The proposed model could adequately describe the fermentation of C. acremonium M25 in a 30-l bioreactor. CONCLUSIONS: CPC productivity was improved by using a 3:7 seed mixture in a 30-1 bioreactor. The changes in morphological features showed a very similar tendency with CPC production. A kinetic model of CPC fermentation was successfully established. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the present study suggest that the use of a 3:7 seed mixture inocula has considerable possibilities for improving CPC productivity if applied to industrial scale fermentations. Through morphology and kinetics study, the kinetic model to describe the morphological differentiation and CPC production by C. acremonium M25 was established.  相似文献   

2.
The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis was studied in shake flasks and bioreactors. The temperature of 28 degrees C and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (gL(-1)): glucose 20, tryptone 2, KH(2)PO(4) 0.46, K(2)HPO(4) 1 and MgSO(4).7H(2)O 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The morphological study revealed that the fungus grows in mainly three different yeast-like forms: ovoid, elongated, and double yeast forms. The high population of the elongated yeast has a very close relationship to high EPS production. The EPS were protein-bound polysaccharides consisted of mainly mannose, xylose, and fucose. The molecular weights of EPS were determined to be (1.3-1.5)x10(6).  相似文献   

3.
Batch cultivations of the nikkomycin Z producer Streptomyces tendae were performed in three different parallel bioreactor systems (milliliter-scale stirred-tank reactors, shake flasks and shaken microtiter plate) in comparison to a standard liter-scale stirred-tank reactor as reference. Similar dry cell weight concentrations were measured as function of process time in stirred-tank reactors and shake flasks, whereas only poor growth was observed in the shaken microtiter plate. In contrast, the nikkomycin Z production differed significantly between the stirred and shaken bioreactors. The measured product concentrations and product formation kinetics were almost the same in the stirred-tank bioreactors of different scale. Much less nikkomycin Z was formed in the shake flasks and MTP cultivations, most probably due to oxygen limitations. To investigate the non-Newtonian shear-thinning behavior of the culture broth in small-scale bioreactors, a new and simple method was applied to estimate the rheological behavior. The apparent viscosities were found to be very similar in the stirred-tank bioreactors, whereas the apparent viscosity was up to two times increased in the shake flask cultivations due to a lower average shear rate of this reactor system. These data illustrate that different engineering characteristics of parallel bioreactors applied for process development can have major implications for scale-up of bioprocesses with non-Newtonian viscous culture broths.  相似文献   

4.
Bacterial cellulose (BC) production by Acetobacter xylinum NUST4.1 was carried out in the shake flask and in a stirred-tank reactor by means of adding sodium alginate (NaAlg) into the medium. When 0.04% (w/v) NaAlg was added in the shake flask, BC production reached 6.0 g/l and the terminal yield of the cellulose was 27% of the total sugar initially added, compared with 3.7 g/l and 24% in the control, respectively. The variation between replicates in all determinations was less than 5%. During the cultivation in the stirred-tank reactor, the addition of NaAlg changed the morphology of cellulose from the irregular clumps and fibrous masses entangled in the internals to discrete masses dispersing into the broth, which indicates that NaAlg hinders formation of large clumps of BC, and enhances cellulose yield. Because the structure of cellulose is changed depending on the culture condition such as additives, structural characteristics of BC produced in the NaAlg-free and NaAlg medium are compared using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD). SEM photographs show some differences in reticulated structures and ribbon width and FT-IR spectra indicate that there is the hydrogen bonding interaction between BC and NaAlg, then X-ray diffraction (XRD) analysis reveals that BC produced with NaAlg-added has a lower crystallinity and a smaller crystalline size. The results show that enhanced yields and modification of cellulose structure occur in the presence of NaAlg.  相似文献   

5.
The optimization of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) from Agrocybe cylindracea ASI-9002 using the statistically based experimental design in a shake flask culture. Both maximum mycelial biomass and EPS were observed at 25 degrees C. The optimal initial pH for the production of mycelial biomass and EPS were found to be pH 4.0 and pH 6.0, respectively. Subsequently, optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth was as follows: maltose 80 g/l, Martone A-1 6 g/l, MgSO4 x 7H2O 1.4 g/l, and CaCl2 1.1 g/l; for EPS production: maltose 60 g/l, Martone A-1 6 g/l, MgSO4 x 7H2O 0.9 g/l, and CaCl2 1.1 g/l. Under the optimal culture condition, the maximum EPS concentration achieved in a 5-l stirred-tank bioreactor indicated 3.0 g/l, which is about three times higher than that at the basal medium.  相似文献   

6.
Suspension cultures of Taxus yunnanensis cells were inoculated with cells of different culture ages (12-24 days) at various densities [50-250 g fresh weight (fw)/l], and treated (on day 7) with a mixture of elicitors, including Ag(+), chitosan and methyl jasmonate. The biomass productivity (during the production stage) increased dramatically with inoculum size, but decreased with inoculum age over 16 days. The volumetric yield and productivity of taxol (paclitaxel) also increased with inoculum size, while the specific taxol yield (per cell) was mainly dependent on inoculum age, with an optimum of 20 days, during the early stationary phase. The highest taxol yield and productivity, 39.8 mg/l and 1.9 mg/l per day, respectively, were obtained with a 20-day-old inoculum at 200 g fw/l. Taxol excretion by the cells increased with inoculum age but decreased with inoculum size. The elicitor-induced activities of catalase (CAT) and phenylalanine ammonia-lyase (PAL) also depended mainly on inoculum age; higher PAL activity and lower CAT activity were obtained with an older inoculum, corresponding to a higher taxol yield. The results show that both inoculum size and age are important variables for taxol production, though the latter more profoundly influences elicitor-induced taxol biosynthesis of the cells. Inoculum size and age are also interrelated and should be optimized together in a two-stage culture process.  相似文献   

7.
Summary The production of actinorhodin by Streptomyces coelicolor in a defined medium was examined using spore and vegetative inocula. The spore inoculum yielded higher concentrations of biomass and actinorhodin as well as a higher maximum specific growth rate compared with the vegetative inoculum. Nevertheless, the productivity of the batch culture for actinorhodin formation with vegetative inoculum was higher than that with spore inoculum.  相似文献   

8.
Inoculum size (1.5-6.0g dry weight/l) significantly affected cell growth and accumulation of intracellular and extracellular taxol in Taxus chinensis. A shorter cultivation time and a higher biomass productivity were achieved using inoculum size of 6.0g DW/l. Both the intracellular content and total production of taxol were increased almost 30% with an increase of inoculum size from 1.5 to 3.0g DW/l, while an even higher inoculum size decreased taxol formation. The extracellular taxol concentration was relatively higher (0.091mg/l) at low inoculum sizes of 1.5 and 2.0g DW/l; and in various cases it was less than 25% of the total amount of taxol produced.  相似文献   

9.
Fed-batch cultures ofL. erythrorhizon hairy root were carried out by controlling sucrose concentration and media conductivity in a shake flask and a modified stirred tank reactor. For the efficient product recovery from the culture,in situ adsorption by XAD-2 was also conducted. When sucrose was used as a carbon source, the highest shikonin production and hairy root growth were obtained. When glucose or fructose was used instead, the growth was severely inhibited. In addition, it was found that alternating feeding of sucrose could be used as an effective strategy for enhancing the productivity of shikonin derivatives., As the XAD-2 amount was increased up to 1.5 g/L, shikonin production was enhanced by removing shikonin produced and other products which might be inhibitory to cell growth. Most amount of shikonin produced was successfully recovered in XAD-2 (Over 99%). Using hairy root culture in a modified stirred tank reactor, the shikonin productivity and hairy root growth rate on the average were 9.34 mg/L day and 0.49 g DCW/L · day, respectively.  相似文献   

10.
The objective of this study is to improve cephalosporin C (CPC) production by optimization of medium and culture conditions. A statistical method was introduced to optimize the main culture medium. The main medium for CPC production was optimized using a statistical method. Glucose and corn steep liquor (CSL) were found to be the most effective factors for CPC production. Glucose and CSL were optimized to 2.84 and 6.68%, respectively. CPC production was improved 50% by feeding of 5% rice oil at day 3rd and 5th day during the shake flask culture ofC. acremonium M25. The effect of agitation speeds on CPC production in a 2.5-L bioreactor was also investigated with fed-batch mode. The maximum cell mass (54.5 g/L) was obtained at 600 rpm. However, the maximum CPC production (0.98 g/L) was obtained at 500 rpm. At this condition, the maximum CPC production was improved about 132% compared to the result with batch flask culture.  相似文献   

11.
Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0?mg/l IAA and 0.025?mg/l GA3), permeabilizing agent (0.5?% v/v DNBP), a biotic elicitor (1?% v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50?mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113?mg/l) was obtained on 25th day of the growth cycle with a biomass of 21?g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2?g/l with azadirachtin accumulation in the hairy roots of 6.4?mg/g (97.28?mg/l) could be achieved after 25?days of the batch cultivation period, which was ~27 and ~14?% less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89?mg/(l?day) of azadirachtin was obtained in the bioreactor.  相似文献   

12.
AIMS: The aim of this work was to optimize the production of a novel antimaralial menisporopsin A by the seed fungus Menisporopsis theobromae BCC 4162. METHODS AND RESULTS: Fungal cultures were grown in shake flasks at 25 degrees C in the basal medium with varying carbon and nitrogen sources, aeration rates and initial pH levels. The optimal carbon and nitrogen sources that improved the production of menisporopsin A were 1% fructose and 2.5% meat extract respectively. The production was further enhanced when the culture incubated on a shaker at 200 rev min(-1) with an initial pH of 8. The yield of menisporopsin A cultured under the optimized conditions was increased from 348.30 (obtained from basal medium) to 889.02 mg l(-1), and the cultivation time was reduced from 28 to only 4 days. As a result, the productivity of menisporopsin A was greatly enhanced to 222.26 mg l(-1) day(-1) which is 18-fold higher than that of basal conditions. Larger scale production in a fermenter was also achieved, yielding menisporopsin A at a maximal level of 594.32 mg l(-1) in 4 days. CONCLUSIONS: The optimized culture conditions for menisporopsin A production by M. theobromae BCC 4162 was the cultivation under shaking or agitation at 25 degrees C in fructose-meat extract medium with an initial pH of 8. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of menisporopsin A in a fermenter with a relatively short incubation period could be valuable for further utilization for chemical structure modification and derivatization.  相似文献   

13.
Effects of organic carbon sources on cell growth and alpha-tocopherol productivity in wild and chloroplast-deficient W14ZUL strains of Euglena gracilis under photoheterotrophic culture were investigated. In both strains, the increase in cell growth was particularly high when glucose was added as the sole organic carbon source. On the other hand, alpha-tocopherol production per dry cell weight was enhanced by adding ethanol. Ethanol addition also increased the chlorophyll concentration in wild strain and mitochondria activity in W14ZUL strain. For effective alpha-tocopherol production, the effects of mixture of glucose and ethanol were investigated. The results showed that, when a mixture of glucose (6 g/l) and ethanol (4 g/l) was used, alpha-tocopherol productivity per culture broth was 3.89 x 10(-2) mg l(-1) h(-1), which was higher than the value obtained without addition of organic carbon source (0.92 x 10(-2) mg l(-1) h(-1)). In addition, under fed-batch cultivation using an internally illuminated photobioreactor, the alpha-tocopherol production per culture broth was 23.43 mg/l, giving a productivity of 16.27 x 10(-2) mg l(-1) h(-1).  相似文献   

14.
Cephalosporin C was produced by a highly productive strain of Cephalosporium acremonium under industrial production conditions by fed-batch cultivation in a 40-l stirred-tank reactor using a complex medium containing 50 g l-1 peanut flour. The influence of dissolved oxygen concentration (pO2, DOC), which was maintained at different constant levels between 5 and 40% of its saturation value, during the production phase by means of a parameter-adaptive pO2-controller, on the cephalosporin C biosynthesis, was investigated. The concentrations of cephalosporin C (CPC) and its precursors penicillin N (PEN N), deacetoxycephalosporin C (DAOC), and deacetylcephalosporin C (DAC) were monitored by on-line HPLC. The concentrations of amino acids, valine (VAL), cysteine (CYS), alpha-amino-adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV) were determined by off-line HPLC. By reducing the pO2 in the production phase from 40 to 5% of its saturation value, the CPC concentration diminished from 7.2 to 1.1 g l-1 and the PEN N concentration increased from 2.57 to 7.65 g l-1. The DAC concentration also dropped from 3.13 to 0.42 g l-1; however, the DAOC concentration was less influenced. The concentrations of AC and ACV were also less affected. The small DOC did not lead to an accumulation of the intermediate AC and ACV during the production phase. With increasing DOC in the range of 5-20%, the maximal specific production rate, the cell mass concentration-based and the substrate-based yield coefficients for CPC increased almost linearly, and fell back for PEN N.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A net-draft-tube, modified airlift reactor and a stirred-tank reactor were used for thuringiensin production by Bacillus thuringiensis subsp. darmstadiensis growing with various concentrations of molasses. The optimum concentration of molasses for thuringiensin production in both reactors was 15 g/l. There was a 6 h delay in sporulation in the modified airlift reactor compared with that in the stirred-tank reactor. Thuringiensin yield in the modified airlift reactor (2.2 g/l) was consequently higher than that in the stirred-tank reactor (1.1 g/l).  相似文献   

16.
Recombinant lycopene was generated by utilizing metabolically engineered Escherichia coli with yields being dependent upon inocula state. Yields were especially low in the case of cultures harboring high-copy plasmids that were established with inocula at the stationary growth phase. On the other hand, cultures derived using low-copy plasmid, however, yielded high amounts of lycopene irrespective of inocula state. Nevertheless, it showed still an inocula dependence pattern in lycopene productivity (mg/l/h). To further increase lycopene productivity, we applied a temperature-shift culture technique (37  25 °C). Using this method, we effectively enhanced lycopene productivity without any problematic phenomena. As a result, we were able to increase lycopene yield by approximately 20% compared to previous culture methods. In the present study, we were able to reach a final lycopene yield up to 260 mg/l for 60 h, which corresponds to the highest titer to date for the production of lycopene in E. coli.  相似文献   

17.
Cephalosporin production by a highly productive Cephalosporium acremonium strain was carried out and optimized by fed-batch operation in a 40 l stirred tank reactor using a complex medium containing 30-120 g l-1 peanut flour. The concentrations of cephalosporin C (CPC) and its precursors: penicillin N (PEN N), deacetoxy cephalosporin C (DAOC), and deacetyl cephalosporin C (DAC) were monitored with an on-line HPLC. The concentrations of amino acids valine (VAL), cysteine (CYS), alpha-amino adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV), were determined off-line by HPLC. The RNA content and dry weight of the sediment as well as the oxygen transfer rate (OTR) and the CO2 production rate (CPR) were used to calculate the cell mass concentration (X). The influences of peanut flour (PF) and the on-line monitored and controlled medium components: glucose (GLU), phosphate, methionine (MET) as well as the dissolved oxygen (DOC) on the cell growth, the product formation, and the pathway of cephalosporin C biosynthesis were investigated and evaluated. When the glucose fed-batch cycle was optimized and oxygen transfer limitation was avoided (DOC greater than 20% of the saturation value), high process performance (103.5 g l-1 X, 11.84 g l-1 CPC, a maximum CPC productivity of 118 mg l-1 h-1, and the whole concentration of the beta-lactam antibiotics CPC, DAC, DAOC, PEN N 17.34 g l-1) was achieved by using 100 g l-1 PF in the medium with the optimum concentration of phosphate (260-270 mg l-1) and a low glucose concentration (less than 0.5 g l-1). The cultivations with different medium concentrations demonstrated that the product formation was directly proportional to the cell mass concentration. On the average, the cell mass-based yield coefficient of CPC: YCPC/X amounted to 0.115 g CPC per g cell mass.  相似文献   

18.
The inoculum age and density can influence considerably the production yield and cost of the fermentation process. Some literature studies report the use of two-stage inocula to enhance metabolite production. In the present study, optimization studies were done in order to define the best inocula conditions supporting a maximum biosurfactant production by Bacillus subtilis SPB1. Hence, by adjusting the levels of the two-stage inocula strategy, lipopeptide production was effectively enhanced to almost 3.4 g/l as estimated gravimetrically. The new defined parameters were as follows; a first inoculum age of 23 h followed by a second inoculum age and size of 4 h and 0.01, respectively. Thereby, we note an improved production as compared to the production yield described under non-optimized inocula conditions reported in our previous work.  相似文献   

19.
AIMS: The objective of the study was to optimize the submerged culture conditions for the production of exopolysaccharide from Paecilomyces sinclairii. METHODS AND RESULTS: The optimal temperature and initial pH for exopolysaccharide production by Paecilomyces sinclairii in shake flask culture were found to be 30 degrees C and 6.0, respectively. Sucrose (60 g l(-1)) and corn steep powder (10 g l(-1)) were the most suitable carbon and nitrogen source for exopolysaccharide production. CONCLUSIONS: Under optimal culture medium, the maximum exopolysaccharide concentration in a 5-l stirred-tank fermenter indicated 7.4 g l(-1), which was approximately three times higher than that in basal medium. The maximum specific growth rates (micro max) and yield coefficient (Y(P/S)) in the optimal culture medium was 0.16 h(-1) and 0.19, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The optimal culture conditions reported in this article can be widely applied to the processes for submerged cultures of other mushrooms.  相似文献   

20.
A large-scale cultivation system for the mass cell production and extraction of the protozoon Tetrahymena thermophila has been developed on the basis of a low-cost complex nutrient medium. Cell growth and the production of extracellular proteases were investigated using a 15-l stirred-tank reactor and 13-l and 1500-l airlift reactors. Processes using defined and complex medium formulations were compared. After cell mass production by 1200 l cell suspension in the large airlift bioreactor, two different extraction methods, based on the use of an extraction decanter and a sedimentation procedure, were compared and followed by cell lyophilization. Cell sedimentation was shown to be the more efficient extraction method as it enabled cell retention/separation while preserving the cell structure. Maximum cell growth was achieved in the stirred-tank bioreactor, supporting the hypothesis that higher shear forces reduce the particle size of the medium, which is responsible for an optimized nutrient supply. The highest glucose uptake rates were found in defined medium lacking the nutrient particles that are present in complex medium formulations. The cell-specific proteolytic activity in culture supernatants of airlift bioreactors using complex medium conditions was higher than that of a culture broth with cells grown under defined medium formulations. Received: 24 September 1998 / Received revision: 23 November 1998 / Accepted: 29 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号