首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A signal peptide is required for entry of a preprotein into the secretory pathway, but how it functions in concert with the other transport components is unknown. In Escherichia coli, SecA is a key component of the translocation machinery found in the cytoplasm and at membrane translocation sites. Synthetic signal peptides corresponding to the wild type alkaline phosphatase signal sequence and three sets of model signal sequences varying in hydrophobicity and amino-terminal charge were generated. These were used to establish the requirements for interaction with SecA. Binding to SecA, modulation of SecA conformations sensitive to protease, and stimulation of SecA-lipid ATPase activity occur with functional signal sequences but not with transport-incompetent ones. The extent of SecA interaction is directly related to the hydrophobicity of the signal peptide core region. For signal peptides of moderate hydrophobicity, stimulation of the SecA-lipid ATPase activity is also dependent on amino-terminal charge. The results demonstrate unequivocally that the signal peptide, in the absence of the mature protein, interacts with SecA in aqueous solution and in a lipid bilayer. We show a clear parallel between the hierarchy of signal peptide characteristics that promote interaction with SecA in vitro and the hierarchy of those observed for function in vivo.  相似文献   

2.
The alkaline phosphatase signal peptide participates in transport of the enzyme to the periplasmic space of Escherichia coli. The signal sequence, like that of other signal peptides, is composed of a polar amino-terminal segment, a central region rich in hydrophobic residues and a carboxy-terminal region recognized by signal peptidase. We have previously shown that an alkaline phosphatase signal peptide mutant containing a polyleucine core region functions efficiently in transport of the enzyme [D. A. Kendall, S. C. Bock, and E. T. Kaiser (1986) Nature 321, 706-708]. In this study, some of the amino acid changes involved in the polyleucine sequence are examined individually. A Phe to Leu substitution as the sole change results in impaired transport properties in contrast to when it is combined with three other amino acid changes in the polyleucine-containing sequence. A mutant with a Pro to Leu substitution in the hydrophobic core region is comparable to wild type while the same type of substitution (Pro to Leu) in the carboxy-terminal segment results in substantial accumulation of the mutant precursor. Finally, introduction of a basic residue into the hydrophobic segment (Leu to Arg substitution) results in a complete export block. These results exemplify the spectrum of properties produced by individual residue changes and suggest there is some interplay between hydrophobicity and conformation for signal peptide function.  相似文献   

3.
Using homopolymeric units of either phenylalanine or tryptophan to replace the natural core segment of the Escherichia coli alkaline phosphatase signal peptide, the hydrophobicity requirements for protein export and processing were further explored. The mutant signal peptide containing polyphenylalanine functioned at least as efficiently as the wild-type, while the signal incorporating polytryptophan was dysfunctional. The transport properties of these mutants confirm our work with sequences rich in aliphatic residues; namely that a high mean hydrophobicity per residue is critical for complete and rapid precursor processing and for translocation of the protein. The efficient transport properties of the polyphenylalanine-containing signal peptide demonstrate that neither the bulky, aromatic nature of phenylalanine nor the unusually high hydrophobicity of this mutant peptide adversely alters function. This study also suggests that the low occurrence of phenylalanine in natural signal sequences is not of functional consequence but probably reflects the low number of DNA codons for this residue. The polytryptophan-containing precursor was membrane inserted but not translocated. This type of transport defect suggests that this is a weakly hydrophobic signal peptide, consistent with hydropathy scales, which indicate that tryptophan is comparable to alanine. This application of polymeric sequences provides a function-based assay for the evaluation of amino acid hydrophobicity.  相似文献   

4.
We have identified a series of mutations in the signal peptide of yeast prepro-alpha-factor which specifically attenuate translocation across the endoplasmic reticulum membrane in vivo. In prepro-alpha-factor-somatostatin hybrids, transposition of the amino-terminal tripeptide from wild-type NH2-Met-Arg-Phe to NH2-Met-Phe-Lys or NH2-Met-Phe-Arg causes a 45-75% reduction in the efficiency of membrane translocation. This is evidenced by the intracellular accumulation of unglycosylated, signal-containing precursors which are membrane-associated and are exposed to the cytosol. Surprisingly, abolition of the single positive charge by replacing arginine with phenylalanine has little effect on translocation into the endoplasmic reticulum. We conclude that the presence of an amino-terminal positive charge is not necessary for efficient targeting or translocation; however, misplacement by one position markedly disrupts translocation without affecting targeting. These mutations thus define an early stage of membrane interaction that is sensitive to local charge effects. Furthermore, our data suggest that post-translational translocation, signal cleavage, and core glycosylation of these polypeptides may occur to a significant extent in vivo.  相似文献   

5.
Previous studies have demonstrated that signal peptides bind to the signal recognition particle (SRP) primarily via hydrophobic interactions with the 54-kDa protein subunit. The crystal structure of the conserved SRP ribonucleoprotein core, however, raised the surprising possibility that electrostatic interactions between basic amino acids in signal peptides and the phosphate backbone of SRP RNA may also play a role in signal sequence recognition. To test this possibility we examined the degree to which basic amino acids in a signal peptide influence the targeting of two Escherichia coli proteins, maltose binding protein and OmpA. Whereas both proteins are normally targeted to the inner membrane by SecB, we found that replacement of their native signal peptides with another moderately hydrophobic but unusually basic signal peptide (DeltaEspP) rerouted them into the SRP pathway. Reduction in either the net positive charge or the hydrophobicity of the DeltaEspP signal peptide decreased the effectiveness of SRP recognition. A high degree of hydrophobicity, however, compensated for the loss of basic residues and restored SRP binding. Taken together, the data suggest that the formation of salt bridges between SRP RNA and basic amino acids facilitates the binding of a distinct subset of signal peptides whose hydrophobicity falls slightly below a threshold level.  相似文献   

6.
Staphylokinase mutants having amino acid substitutions within the amino-terminal charged segment of the signal peptide have been produced by in vitro oligonucleotide-directed mutagenesis. When the processing of the gene products was analyzed in Escherichia coli cells, the rate of processing of the mutant staphylokinase precursor decreased as the net charge became more negative. A net positive charge, but not specific amino acid residues, was required on the amino-terminal segment for efficient processing. Staphylokinase precursor having a net negative charge accumulated in the cytoplasm, tending to bind to the cytoplasmic membrane as determined by subcellular fractionation and immunoelectron microscopy. Although a mutant carrying an amino acid substitution in the hydrophobic segment and wild-type staphylokinases had an interfering effect on the processing of other normal secreted proteins, this effect was lost when they also contained charge-altering substitutions in the amino-terminal region. From these results, we concluded that a positive charge on the amino-terminal segment of the staphylokinase signal peptide is required for entrance into the protein export process.  相似文献   

7.
J H Ou  C T Yeh    T S Yen 《Journal of virology》1989,63(12):5238-5243
The precore and core proteins of hepatitis B virus have identical deduced amino acid sequences other than a 29-residue amino-terminal extension (precore region) on the precore protein. The first 19 of these residues serve as a signal sequence to direct the precore protein to the endoplasmic reticulum, where they are cleaved off with formation of precore protein derivative P22 for secretion. In this report, we show that P22 can alternatively be transported into the nucleus following signal peptide cleavage. Experiments with deletion mutants indicated that this nuclear transport proceeds via the cytosol and is dependent on the amino-terminal portion of P22. Thus, the hepatitis B virus precore protein is a secreted, cytosolic, and nuclear protein.  相似文献   

8.
Hybrid proteins were constructed by coupling beta-lactamase to the signal sequence (plus nine amino acids) of selected mutant prolipoproteins of Escherichia coli. The mutant prolipoprotein signal peptides contained lesions in two structural domains of the signal peptide, the basic amino-terminal domain and the hydrophobic core domain. We then compared the processing and localization of the mutant prolipo-beta-lactamases to the processing and localization of the comparable mutant prolipoproteins. We show that a mutant signal sequence with an anionic amino terminus exhibits similar limitations in the processing of prolipo-beta-lactamase as previously observed in prolipoprotein. Deletion of four hydrophobic residues from hydrophobic core results in a signal peptide which slowly translocates a fraction of the total mutant hybrid protein synthesized. This signal peptide was previously shown to translocate lipoprotein efficiently. Alteration of this hydrophobic core, which stimulated synthesis of mutant prolipoproteins, does not stimulate synthesis of prolipo-beta-lactamase. Finally mutations that slowed processing of prolipoprotein by affecting the proposed helical structure of the signal peptide had no significant effect on the processing of prolipo-beta-lactamase. These results suggest that the positively charged amino-terminal domain of the signal peptide has a common role in protein secretion regardless of the secretory protein. On the other hand, other domains of the signal peptide exhibit different phenotypes when the secretory protein is changed.  相似文献   

9.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

10.
These experiments examine the role of conformation, hydrophobicity, and steric constraints in the function of the prokaryotic signal peptide cleavage region. The experimental strategy involves replacement of the wild type Escherichia coli alkaline phosphatase signal peptide cleavage region with a series of idealized model sequences designed to epitomize the particular structural and physical variables under study. By analyzing model sequences whose conformations have been determined by physical studies, we have demonstrated that efficient transport does not depend on the structural preference of the cleavage region. Although previous studies based on Chou-Fasman analysis have suggested that the cleavage region forms a beta-turn which is required for transport, our results demonstrate that either a beta-turn- or alpha-helix-fostering sequence in the cleavage region functions indistinguishably from wild type. Furthermore, the presence of a proline residue between the core and cleavage region, although common in natural sequences, is not essential for export. Cleavage regions of varying hydrophobicities can support translocation across the inner membrane, but the placement of bulky residues at positions -1 and -3 upstream of the cleavage site abolishes processing and transport to the periplasm. By reducing the signal peptide to simplified, idealized segments, this study has identified a largely polymeric sequence, MKQST(L10)-(A6), that functions equivalently to the wild type alkaline phosphatase signal peptide. This work starts to provide a basis for the design of a universal prokaryotic signal peptide that incorporates all the critical physical and structural characteristics required for transport function.  相似文献   

11.
Internalization of the signal sequence of the vesicular stomatitis virus glycoprotein was accomplished by extending the amino-terminal coding sequence with sequences derived from pBR322. Such constructs were then expressed in eukaryotic cells. It was found that amino-terminal extensions consisting of 20, 61, or 102 amino acids totally unrelated to any signal peptide affected neither the function nor cleavage of the signal sequence in vivo. Subsequent transport of the glycoprotein was also not affected. Although the internalized signals functioned with wild-type efficiency in vivo, membrane insertion in vitro (as determined by proteolysis protection assays), signal cleavage, and glycosylation were only achieved when the amino-terminal presequences were short.  相似文献   

12.
By using an in vitro system for the translocation of secretory proteins in Escherichia coli, detailed and quantitative studies were performed as to the function of the positively charged amino acid residues at the amino terminus of the signal peptide. Uncleavable OmpF-Lpp, a model secretory protein carrying an uncleavable signal peptide, and mutant proteins derived from it were used as translocation substrates. When the positive charge, +2 (LysArg) for the wild-type, was changed to 0, -1, or -2, little or no translocation was observed. The number of the positive charge was altered by introducing different numbers of Lys or Arg residues into the amino terminus. The rate of translocation was roughly proportional to this number, irrespective of whether the charged amino acid residues were Lys or Arg. When the amino-terminal LysArg was replaced by His residues, translocation took place more efficiently at pH 6.5 than pH 8.0, whereas that of the wild-type was about the same as the two pH values. We conclude that the signal peptide requires a positive charge at its amino-terminal region to function in the translocation reaction and that the rate of translocation is roughly proportional to the number of the positively charged group, irrespective of the amino acid species that donates the charge. Evidence suggesting that the positive charge is involved in the binding of precursor proteins to the membrane surface to initiate translocation is also presented.  相似文献   

13.
The Streptococcus gordonii cell surface glycoprotein GspB mediates high-affinity binding to distinct sialylated carbohydrate structures on human platelets and salivary proteins. GspB is glycosylated in the cytoplasm of S. gordonii and is then transported to the cell surface via a dedicated transport system that includes the accessory Sec components SecA2 and SecY2. The means by which the GspB preprotein is selectively recognized by the accessory Sec system have not been characterized fully. GspB has a 90-residue amino-terminal signal sequence that displays a traditional tripartite structure, with an atypically long amino-terminal (N) region followed by hydrophobic (H) and cleavage regions. In this report, we investigate the relative importance of the N and H regions of the GspB signal peptide for trafficking of the preprotein. The results show that the extended N region does not prevent export by the canonical Sec system. Instead, three glycine residues in the H region not only are necessary for export via the accessory Sec pathway but also interfere with export via the canonical Sec route. Replacement of the H-region glycine residues with helix-promoting residues led to a decrease in the efficiency of SecA2-dependent transport of the preprotein and a simultaneous increase in SecA2-independent translocation. Thus, the hydrophobic core of the GspB signal sequence is responsible primarily for routing towards the accessory Sec system.  相似文献   

14.
Escherichia coli strains harboring malE signal sequence point mutations accumulate export-defective precursor maltose-binding protein (MBP) in the cytoplasm. Beginning with these mutants, a number of spontaneous intragenic revertants have been obtained in which export of the MBP to the periplasm is either partially or totally restored. With a single exception, each of the reversion mutations resulted in an increase in the overall hydrophobicity of the signal peptide hydrophobic core by one of five different mechanisms. In some revertants, MBP export was achieved at a rate comparable to the wild type MBP; in other cases, the rate of MBP export was significantly slower than wild type. The results indicate that the overall hydrophobicity of the signal peptide, rather than the absolute length of its uninterrupted hydrophobic core, is a major determinant of MBP export competency. An alteration at residue 19 of the mature MBP also has been identified that provides fairly efficient suppression of the export defect in the adjacent signal peptide, further suggesting that important export information may reside in this region of the precursor protein.  相似文献   

15.
Bacterial signal peptides display little amino acid sequence homology despite their shared role in mediating protein transport. This heterogeneity may exist to permit the establishment of signal peptide conformations that are appropriate for transport of particular proteins. In this paper we explore how signal peptides are composed of structural units that may interact with each other and with the mature protein to effect transport. Using a new application of cassette mutagenesis, we have replaced the hydrophobic core of the Escherichia coli alkaline phosphatase signal peptide with cores from the signals of maltose-binding protein, OmpA, and M13 major coat protein. The core regions from maltose-binding protein and OmpA effectively replaced the alkaline phosphatase core; the resultant hybrid signals performed as well as wild type in periplasmic transport and processing of alkaline phosphatase. However, the core region from M13 major coat protein generated a transport-incompetent hybrid signal peptide. Elimination of a proline-containing portion of the M13 major coat protein core did not improve transport effectiveness. However, restoration of the procoat cleavage region and the negatively charged amino terminus of the mature protein did ameliorate the transport defect. These results suggest that at least in the case of these procoat-derived signal peptide mutants, there is a requirement for complementarity among the hydrophobic core, cleavage region, and part of the mature protein in order for efficient protein transport to occur.  相似文献   

16.
Many integral membrane proteins contain an amino-terminal segment, often referred to as an N-tail, that is translocated across a membrane. In many cases, translocation of the N-tail is initiated by a cleavable, amino-terminal signal peptide. For N-tail proteins lacking a signal peptide, translocation is initiated by a transmembrane segment that is carboxyl to the translocated segment. The mechanism of membrane translocation of these segments, although poorly understood, has been reported to be independent of the protein secretion machinery. In contrast, here we describe alkaline phosphatase mutants containing artificial transmembrane segments that demonstrate that translocation of a long N-tail across the membrane is dependent upon SecA, SecB, and the electrochemical potential in the absence of a signal peptide. The corresponding mutants containing signal peptides also use the secretion machinery but are less sensitive to inhibition of its components. We present evidence that inhibition of SecA by sodium azide is incomplete even at high concentrations of inhibitor, which suggests why SecA-dependent translocation may not have been detected in other systems. Furthermore, by varying the charge around the transmembrane segment, we find that in the absence of a signal peptide, the orientation of the membrane-bound alkaline phosphatase is dictated by the positive inside rule. However, the presence of a signal peptide is an overriding factor in membrane orientation and renders all mutants in an Nout-Cin orientation.  相似文献   

17.
Tat- and Sec-targeting signal peptides are specific for the cognate Tat or Sec pathways. Using two reporter proteins, the specificity and convertibility of a Tat signal peptide were assessed in vivo. The specific substitutions by RK, KR and KK for the RR motif of the TorA signal peptide had no effect on the exclusive Tat-dependent export of colicin V (ColV). By introducing multiple substitutions in a typical Tat signal peptide, altered signal peptides lacking the twin-arginine motif were obtained. Interestingly, some of these signal peptides preserved Tat-pathway targeting capacity, but resulted in a loss of exclusivity. In addition, further increasing the hydrophobicity of the n-region without modifying the h-region converted the Tat signal peptides to Sec signal peptides in the ColV transport. Replacement of positively charged residues in the c-region also abolished the Tat-exclusive targeting of ColV or green fluorescent protein (GFP), but the folded GFP could be transported only through the Tat pathway. These results strongly suggest that the overall hydrophobicity of the n-region is one of the determinants of Tat-targeting exclusivity.  相似文献   

18.
C T Yeh  Y F Liaw    J H Ou 《Journal of virology》1990,64(12):6141-6147
Precore and core proteins are two related co-carboxy-terminal proteins of hepatitis B virus. Precore protein contains the entire sequence of core protein plus an amino-terminal extension of 29 amino acid residues. Both proteins can display a common antigenic determinant known as core antigen (HBcAg). Clinically, HBcAg is detected in the nucleus, cytoplasm, or both of hepatitis B virus-infected hepatocytes. In order to understand the mechanism that regulates nuclear transport of HBcAg, various portions of precore and core proteins were linked to a reporter protein, human alpha-globin, and expressed in mammalian cells. Our results indicate that the precore protein-specific sequence, although important for nuclear transport, does not contain a nuclear localization signal. Instead, a signal for nuclear transport is located near the carboxy termini of precore and core proteins in the arginine-rich domain. This signal is made up of a set of two direct PRRRRSQS repeats and is highly conserved among mammalian hepadnaviruses.  相似文献   

19.
Subunit II (CyoA) of cytochrome bo3 oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.  相似文献   

20.
Summary Deletion mutations, 3–19 amino acids in size, were introduced into the transit peptide (57 amino acids) of a small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase from pea. Transport of the authentic small subunit precursor (pSSU) and of the mutant pSSUs by isolated chloroplasts of pea was examined. We show that the transit peptide contains two different, separated functional regions. A deletion mutation in the central region of the transit peptide, a region purported to be important for function, barely affected transport. Changes in the amino-terminal region of the transit peptide drastically reduced transport. Processing of mutants affected in either the amino-terminal or central portion of the transit peptide appeared normal. A deletion mutation at the carboxy-terminus of the transit peptide interfered with both transport and processing. From the aberrant processing we suggest that pSSU is matured in more than one step, and that the maturation signal is located within the carboxy-terminal 16 amino acids. The methionine residue at the evolutionarily conserved cleavage site (cysteine-methionine) between the transit peptide and the mature protein is not essential for processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号