首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the intactness of sustentacular (Sertoli) cell tight junctions and the status of spermatogenesis was examined in rats fed a vitamin-A-deficient diet after weaning (VAD rats). Both serum and testicular retinol concentrations of the VAD rats declined to a nadir by 80 days of age. At this time, it was observed that Sertoli cell tight junctions of the VAD animals were intact and complete spermatogenesis was maintained. Leakage in Sertoli cell tight junctions, as demonstrated by the presence of lanthanum in the adluminal compartment of the seminiferous epithelium, was first observed in 90-day-old VAD rats. Severe regression of spermatogenic cells was noted in 100-day or older VAD animals. These results suggest that severe germ cell loss observed during chronic vitamin A deficiency may result from abnormal intratubular environment due to the disruption of the blood-testis barrier.  相似文献   

2.
A number of years ago we reported that tight junctions between adjacent Sertoli cells subdivide the seminiferous epithelium into two compartments, basal and adluminal, thus forming the morphological basis of the blood-testis barrier. It is now generally believed that the special milieu created by the Sertoli cells in the adluminal compartment is essential for germ cell differentiation. In order to duplicate the compartmentalization that occurs in vivo, Sertoli cells were cultured in bicameral chambers on Millipore filters impregnated with a reconstituted basement membrane. Confluent monolayers of these cells were tall columnar (40–60 µ in height) and highly polarized. These Sertoli cell monolayers established electrical resistance that peaked when the Sertoli-Sertoli tight junctions developed in culture. In addition, the monolayers formed a permeability barrier to 3H-inulin and lanthanum nitrate. The bicameral chambers were utilized in a number of studies on protein secretion, and it was revealed that numerous proteens are secreted in a polarized manner. In another study, hormone- stimulated aromatase activity was measured in Sertoli cells grown on plastic culture dishes, plastic dishes coated with laminin or Matrigel, and in the bicameral chambers. Cell culture on basement membrane substrate decreased the FSH-dependent estrogen production. No estrogen production was observed when the Sertoli cells were cultured in the bicameral chambers. These results are in accord with the hypothesis that differentiated Sertoli cells lose their ability to metabolize androgen to estrogen in an hormone-dependent manner, whereas undifferentiated cells in culture, or in vivo, have a very active FSH-dependent aromatase activity. This bicameral culture system could serve as an important model system to examine various functions of Sertoli cells including interactions of Sertoli cells with germ, Leydig, and myoid cells.  相似文献   

3.
Ectoplasmic specializations (ES) containing packed actin microfilaments are associated with the numerous parallel rows of occluding junctions which form the Sertoli cell (blood-testis) barrier. To determine if ES regulate the structure of the occluding junctions and/or barrier permeability, we experimentally disrupted ES microfilaments in vivo with intratesticularly injected cytochalasin D (CD). Electron microscopic observations of seminiferous tubules from CD-treated (150-500 microM CD; 0.5-12 hr) animals indicated that ES was absent from regions where the Sertoli cell barrier is located. Seminiferous epithelial sheets from uninjected or vehicle-injected animals (1 DMSO: 1 saline) stained with NBD-phallacidin demonstrated the presence of patterned ES actin surrounding the basolateral regions of adjacent Sertoli cells. After exposure to CD, epithelial sheets exhibited increasingly patchy fluorescence indicating progressive F-actin disruption. Freeze-fracture replicas of CD-injected testes revealed numerous focal alterations in the region of occluding junctions which included disorganization of the parallel arrangement of junctional rows, the presence of free-ending rows, clustering of intramembranous particles (IMPs) between rows, reduction in the number of rows, and loss of IMPs on both the P-face and E-face. Tracer experiments, following CD exposure, were conducted to test the integrity of occluding junctions: lanthanum hydroxide, dextrose, or filipin was added, in separate experiments, to the fixative during perfusion-fixation. In another study, serum containing an antibody against adluminal germ cells was injected intratesticularly, and frozen sections were processed for immunofluorescence study. A final study consisted of simultaneous intratesticular infusions of CD and radiolabelled inulin with subsequent intraluminal and peritubular fluid sampling. In animals which were injected with CD, lanthanum was found to enter the adluminal compartment; fixative made hypertonic by addition of dextrose caused germ cells within the adluminal compartment to shrink and produce exaggerated intercellular spaces; filipin-cholesterol perturbations were present between some Sertoli cell junctional rows and on spermatid plasma membranes; and IgG was detected within the adluminal compartment of many seminiferous tubules. None of these adluminal manifestations was noted in control animals or those which received vehicle. Quantitatively, in the in vivo micropuncture experiments, significantly more radiolabelled inulin entered the lumen of seminiferous tubules from CD-treated animals than from those exposed to vehicle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
FSH binding and cAMP responses to FSH in Sertoli cell-enriched testes were not affected by the vitamin A (retinol) status of the animals. These results indicate that changes in Sertoli cell functions during vitamin A deficiency are independent of FSH-Sertoli cell interactions. Concentrations of serum androgen binding protein (ABP) in vitamin A-deficient rats were consistently higher than those of control animals throughout the study period. The accumulation of testicular fluid after efferent duct ligation, an indication of Sertoli cell secretory function, was normal in vitamin A-deficient rats at least until 70 days of age, but declined thereafter. ABP concentrations in seminiferous tubular fluid of vitamin A-deficient rats increased transitorily during the 70-80-day age period but returned to normal by 90 days. The increment of ABP in seminiferous tubular fluid after efferent duct ligation, and ABP concentrations in interstitial fluid were consistently lower in vitamin A-deficient rats. The higher serum ABP in vitamin A-deficient rats therefore cannot be explained by an increase in the permeability of Sertoli-cell tight junctions or basement membrane.  相似文献   

5.
D A Buthala  T J Lobl 《Cytobios》1979,25(97):23-28
We were interested in discovering whether the antifertility agent, DICA [1-(2,4-dichlorobenzyl)-1-H-indazole-3-carboxylic acid] induced Sertoli cell tight junction damage. Testis were fixed in 1% lanthanum nitrite cacodylate-buffered 2% gluteraldehyde at various times following a single oral 100 mg/kg dose of DICA. In control animals adluminal lanthanum was never seen. At one and ten days following DICA treatment adluminal lanthanum was seen. This suggests that the Sertoli cell tight junctions are more permeable to lanthanum following DICA treatment.  相似文献   

6.
Adjudin, an analogue of lonidamine, affects adhesion between Sertoli and most germ cells, resulting in reversible infertility in rats, rabbits and dogs. Previous studies have described the apical ectoplasmic specialization, a hybrid-type of Sertoli cell–elongating/elongated spermatid adhesive junction, as a key target of adjudin. In this study, we ask if the function of the blood–testis barrier which is constituted by co-existing tight junctions, desmosome-gap junctions and basal ectoplasmic specializations can be maintained when the seminiferous epithelium is under assault by adjudin. We report herein that administration of a single oral dose of adjudin to adult rats increased the levels of several tight junction and basal ectoplasmic specialization proteins during germ cell loss from the seminiferous epithelium. These findings were corroborated by a functional in vitro experiment when Sertoli cells were cultured on Matrigel?-coated bicameral units in the presence of adjudin and transepithelial electrical resistance was quantified across the epithelium. Indeed, the Sertoli cell permeability barrier was shown to become tighter after adjudin treatment as evidenced by an increase in transepithelial electrical resistance. Equally important, the blood–testis barrier in adjudin-treated rats was shown to be intact 2 weeks post-treatment when its integrity was monitored following vascular administration of inulin-fluorescein isothiocyanate which failed to permeate past the barrier and enter into the adluminal compartment. These results illustrate that a unique mechanism exists to maintain blood–testis barrier integrity at all costs, irrespective of the presence of germ cells in the seminiferous epithelium of the testis.  相似文献   

7.
Serum LH and FSH concentrations were measured in adult male rats. Blockage of the ductuli efferentes by surgical ligation or treatment with the anti-fertility drug alpha-chlorohydrin did not produce any changes in serum LH or androgen-dependent organ weights. Serum FSH in both groups was significantly raised by 4 days after treatment and remained so throughout most of the experimental period (42 days) but did not attain the values obtained in castrates. The gonadotrophin changes were accompanied by an initial increase in the weight and turgidity of the testes which then became flaccid and atrophied. These changes were similar but not identical after both treatments. Androgen secretion was impaired in adult rats treated with ethylene dimethane sulphonate; serum LH values were similar to those of 14-day castrates, and serum FSH was also elevated but not to the level found in the castrates. Ligation of the ductuli efferentes did not produce any further changes in concentrations of either hormone in spite of the retention of the testicular products within the testes as reflected by an increase in weight. The results are consistent with the view that changes in serum FSH after blockage of the ductuli efferentes are related to disturbances in the production of inhibin from the seminiferous epithelium rather than retention of inhibin with the testicular tubules.  相似文献   

8.
What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.  相似文献   

9.
The modulation of Sertoli cell junctions was studied in the non-seasonal rooster (Gallus domesticus) and in the seasonally breeding mallard duck (Anas platyrynchos anatidae) using thin sectioning, a junction permeability tracer, and freeze-fracture replication. During the active spermatogenic phase, the junctions of the duck appeared similar to those of the rooster, thereby establishing the duck as an avian model of seasonal modulation of Sertoli cell junctions. As with mammalian seasonal breeders, during the active phase, occluding, gap, and adhering junctions formed a junctional complex all along the long axis of the Sertoli cell. Unlike in mammals, however, no 7-nm filaments were associated with the occluding junctions. An occluding zonule encircled the Sertoli cell apico-lateral membrane domain situated above the young germ cells, and constituted a barrier to the entry of lanthanum in the basal third of the seminiferous epithelium. Toward the basal side, forming focal junctions were located on the lateral Sertoli cell membrane domain facing the young germ cells. Toward the apical side, dismantling focal junctions were located on the apical Sertoli cell membrane domain facing the older germ cells. During the duck's testicular regression, 7-nm filaments were associated with an occluding junction. In freeze-fracture replicas, each junction was formed by a continuous junctional strand that encircled the apex of the cell. The strands composed a delicate narrow meshwork: an occluding zonule. The blood-testis barrier was localized near the apex of the epithelium. The seasonal reduction in the number of the strands and the changes in their orientation did not coincide with a change in the permeability of the occluding zonule to lanthanum. In addition, the cyclic disappearance of junction-associated filaments was not correlated with a change in the permeability of the junctions but with a change in the affinity of junctional particles for one or the other fracture face. It is proposed that the Sertoli cell plasma membrane domains situated apical and basal with respect to the occluding zonule be considered apical and lateral, respectively. The remaining domain facing the basement membrane would therefore be called basal. In the duck, the occluding zonule is not seasonally shifted from the base to the apex of the Sertoli cell. Instead, it remains stationed above the younger germ cells throughout the year.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.  相似文献   

11.
The interrelationships of the Sertoli cells and germ cells in the Syrian hamster were examined using the electron microscope. Demosome-like junctions were observed attaching Sertoli cells to spermatogonia and spermatocytes. In the region of the junctions dense plaques lay on the cytoplasmic surfaces of the plasmalemma of the opposing cells. Sertoli cell cytoplasmic filaments converged in the area of the junctions and inserted into the subsurface densities. Filaments were not observed associated with the subsurface densities of the germ cells. In the region of the junctions a 15...20 nm gap, filled with an attenuate amorphous substance, separated the plasmalemmata. Another attachment device termed "junctional specialization" occurred between Sertoli cells, and preleptotene spermatocytes and all successive developmental steps in the germ cell line in the hamster. The junctional specializations consisted of a mantel of Sertoli cell cytoplasmic filament lying subjacent to the Sertoli cell plasmalemma and an opposed cisterna of the endoplasmic reticulum. In stages VII-VIII preleptotene supermatocytes were observed in transit from the basal compartment to the adluminal compartment. While Sertoli-Sertoli junctions adluminal to the spermatocytes remained intact, typical Sertoli-Sertoli junctions formed between opposed Sertoli cell processes basal to the spermatocytes. It is proposed that, during the passage of spermatocytes in to the adluminal compartment, junctional specializations associated with preleptotene spermatocytes in the basal compartment migrate basal to the spermatocytes and contribute to formation of Sertoli-Sertoli junctions. Treatment of seminiferous tubules with hypertonic media was used to demonstrate that the junctional specializations function in cell-to-cell adhesion. Data indicated that these junctions function to retain the developing spermatids within the seminiferous epithelijm until the time of spermiation. At spermination the junctional specializations disappear and the spermatids drift off into the tubule lumen.  相似文献   

12.
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.  相似文献   

13.
Experimental autoimmune orchitis is a useful model for studying testicular inflammation and germ/immune cell interactions. Th17 cells and their hallmark cytokine IL17A were reported to be involved in the development of autoimmune orchitis. The aim of the present work is to investigate the pathogenic role of IL17A in rat testis. In vitro experiments were performed in order to analyze effects of IL17A on Sertoli cell tight junctions. The addition of IL17A to normal rat Sertoli cell cultures induced a significant decline in transepithelial electrical resistance and a reduction of occludin expression and redistribution of occludin and claudin 11, altering the Sertoli cell tight junction barrier. Intratesticular injection of 1 μg of recombinant rat IL17A to Sprague–Dawley rats induced increased blood–testis barrier permeability, as shown by the presence of biotin tracer in the seminiferous tubule adluminal compartment, and delocalization of occludin and claudin 11. Results showed that IL17A induced focal inflammatory cell infiltration in the interstitium and germ cell sloughing in adjacent seminiferous tubules. Moreover, an increase in TUNEL+ apoptotic germ cells was also observed. Inflammatory ED1+ macrophages were the main population infiltrating the interstitium following IL17A injection. This correlated with an increase in mRNA expression of the monocyte chemoattractant protein Ccl2, its receptor Ccr2 and the vascular cell adhesion molecule Vcam1. Overall results suggest a relevant role of IL17A in the development of testicular inflammation, facilitating the recruitment of immune cells to the testicular interstitium and inducing impairment of blood–testis barrier function.  相似文献   

14.
Dye coupling experiments were performed to determine whether the gap junctions connecting Sertoli cells with other Sertoli cells and different germ cell stages in rats showed functional variations. Chop loading of adult rat seminiferous tubules was conducted using fluorescent dextran controls and a variety of low-molecular-weight tracers (lucifer yellow, biotin-X-cadaverine, biotin cadaverine, and neurobiotin) to evaluate dye coupling in situ, and scrape loading was used to study dye coupling in Sertoli-germ cell cocultures established using prepuberal rats. Sertoli-Sertoli coupling is relatively short range and nonselective in situ, whereas coupling between Sertoli cells and chains of spermatogonia is strongly selective for the positively charged biotin tracers relative to negatively charged lucifer yellow. Coupling between Sertoli cells and spermatogonia was also asymmetric; lucifer yellow in germ cells never diffused into Sertoli cells, and biotinylated tracers only weakly diffused from spermatogonia to Sertoli cells. Asymmetric coupling would facilitate the concentration in germ cells of molecules diffusing through junctions from Sertoli cells. Dye coupling between Sertoli cells and adluminal germ cells was too weak to detect by fluorescence microscopy, suggesting that the junctional communication between these cells may be functionally different from that between Sertoli and basal germ cells. The results show that there are multiple routes of gap junction communication in rat seminiferous tubules that differ in permeability properties and show alternative gating states. Functional diversity of gap junctions may permit regulated communication among the many interacting Sertoli cells and germ cell stages in the seminiferous epithelium.  相似文献   

15.
Summary The occurrence of tight junctions between Sertoli cells, providing the structural basis of the blood-testis barrier, has been studied using hypertonic fixative and lanthanum tracer in the testes of seven species of vertebrates having different testicular organization. In all cases inter-Sertoli tight junctions, establishing an effective barrier, appear either when meiosis is complete (teleosts and amphibians, both with cystic testes) or immediately after the onset of meiosis (reptiles and birds, both having testes consisting of seminiferous tubules). In the cystic testes, tight junctions are regularly associated with desmosomes, whereas in testes with seminiferous tubules, cisternae of the endoplasmic reticulum are present beneath the junctions (subsurface cisternae). The avian testes examined have, in addition, septate-like junctions between the Sertoli cells but before the tight junctions.Dedicated to Prof. Dr. H. Rollhäuser, Münster, on the occasion of his 65th birthday.  相似文献   

16.
Summary The pattern of compartmentation of the seminiferous epithelium was investigated, using a lanthanum tracer technique, in human testicular biopsies of adult infertile men (age 27 to 44 years), where dislocation of spermatogonia from the basal lamina occurred. Spermatogonia type A and B were found in a two-or three-layered arrangement, in aberrant locations throughout the seminiferous epithelium, and in intratubular positions associated with fragments of Sertoli cell cytoplasm. Tracer impregnation was found around spermatogonia in a multilayered arrangement, indicating the extension of the basal compartment in a luminal direction. Single spermatogonia within the second or third layer of the seminiferous epithelium were regularly found to be surrounded by tracer. The junctional complex between the lateral membranes of adjacent Sertoli cells was devoid of tight junctions. Tracer penetration around spermatogonia in a more luminal position was prevented by intact Sertoli cell junctional complexes; tracer was also absent from intraluminal located spermatogonia associated with cytoplasmic fragments of Sertoli cells. The luminal extension of the basal compartment associated with the dislocation of spermatogonia clearly differs from the pattern of compartmentation during the movement of primary spermatocytes within undisturbed epithelium. There is a strong incidence of elevated serum levels of folliclestimulating hormone (>7 U/l), indicating a suppression of Sertoli cell function; this may be the cause for the dislocation of spermatogonia and the changes of compartmentation.  相似文献   

17.
β-Citryl-l-glutamic acid, which is known to be highly concentrated in the brains of immature animals, is preferentially localized in the testes of various adult animals, including mammals, amphibians and fish, mainly in the germinal cells. In young rats, the citrylglutamate concentration increases with age and coincides with the development of late spermatocytes into early spermatids. Rats with seminiferous tubule failure induced by ductuli efferentes ligation and experimental cryptorchidism are infertile as a result of germ cell depletion, especially spermatocytes and early spermatids. In these animals, the testicular citrylglutamate content was much lower than in normal testes.  相似文献   

18.
19.
Cryptorchidism was simulated in 13-15-day-old rats by severing the gubernaculum testis and fixing the testis to the abdominal wall. Ultrastructural examination of the testis was made 100 days after birth when a number of modifications to the seminiferous tubules were noted. Germ cells were scanty, with only occasional spermatogonia and primary spermatocytes persisting. The nuclei of Sertoli cells were regular and oval or indented in shape. Their cytoplasm was characterized by a rich smooth endoplasmic reticulum, lipid inclusions and mitochondria with tubulo-vesicular cristae indicative of stero?dogenic activity. The decrease in the number of the germ cells induced a membrane rearrangement with numerous tight junctions and interdigitations between the Sertoli cells. Sertoli cell-specific junctional complexes were very extensive. The lamina propria of the seminiferous tubule appeared thickened and folded and the multilayered basal lamina had complex folds. After fixation with glutaraldehyde containing lanthanum, the latter substance was identified in the basal intercellular spaces of the seminiferous tubules indicating that the blood-testis barrier remains functional in the intra-abdominal testis.  相似文献   

20.
β-Citryl-l-glutamic acid, which is known to be highly concentrated in the brains of immature animals, is preferentially localized in the testes of various adult animals, including mammals, amphibians and fish, mainly in the germinal cells. In young rats, the citrylglutamate concentration increases with age and coincides with the development of late spermatocytes into early spermatids. Rats with seminiferous tubule failure induced by ductuli efferentes ligation and experimental cryptorchidism are infertile as a result of germ cell depletion, especially spermatocytes and early spermatids. In these animals, the testicular citrylglutamate content was much lower than in normal testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号