首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously used a panel of quantitative and qualitative serological assays to define a lengthy and complex maturation of envelope-specific antibody responses in monkeys experimentally infected with attenuated simian immunodeficiency virus (SIV) that is closely associated with the temporal development of enduring and protective immunity to experimental virus challenge. To elucidate in more detail the changes in antibody specificity associated with this maturation, we describe here 'domain-specific' serological studies to characterize the evolution of antibody responses to defined linear determinants of the SIV envelope protein. The results of these studies reveal for the first time distinguishing differences in the evolution of antibody populations to distinct envelope peptide segments, as determined by measurements of antibody titer and avidity, indicating different patterns of antibody maturation to distinct linear envelope antigenic determinants. Thus, these data demonstrate the potential for domain-specific serology to produce a high-resolution characterization of SIV-specific antibody responses that can be used to evaluate experimental vaccine responses and to identify potential immune correlates of protection.  相似文献   

2.
Previous studies of attenuated simian immunodeficiency virus (SIV) vaccines in rhesus macaques have demonstrated the development of broad protection against experimental challenge, indicating the potential for the production of highly effective immune responses to SIV antigens. However, the development of this protective immune status was found to be critically dependent on the length of time postvaccination with the attenuated virus strain, suggesting a necessary maturation of immune responses. In this study, the evolution of SIV envelope-specific antibodies in monkeys experimentally infected with various attenuated strains of SIV was characterized by using a comprehensive panel of serological assays to assess the progression of antibodies in longitudinal serum samples that indicate the development of protective immunity. In parallel studies, we also used the same panel of antibody assays to characterize the properties of SIV envelope-specific antibodies elicited by inactivated whole-virus and envelope subunit vaccines previously reported to be ineffective in producing protective immunity. The results of these studies demonstrate that the evolution of protective immunity in monkeys inoculated with attenuated strains of SIV is associated with a complex and lengthy maturation of antibody responses over the first 6 to 8 months postinoculation, as reflected in progressive changes in antibody conformational dependence and avidity properties. The establishment of long-term protective immunity at this time in general parallels the absence of further detectable changes in antibody responses and a maintenance of relatively constant antibody titer, avidity, conformational dependence, and the presence of neutralizing antibody for at least 2 years postinoculation. In contrast to the mature antibody responses elicited by the attenuated SIV vaccines, the whole-virus and envelope subunit vaccines in general elicited only immature antibody responses characterized by poor reactivity with native envelope proteins, low avidity, low conformational dependence, and the absence of neutralization activity against the challenge strain. Thus, these studies establish for the first time an association between the effectiveness of experimental vaccines and the capacity of the vaccine to produce a mature antibody response to SIV envelope proteins and further indicate that a combination of several antibody parameters (including titer, avidity, conformational dependence, and virus neutralization) are superior to any single antibody parameter as prognostic indicators to evaluate candidate AIDS vaccines.  相似文献   

3.
Characterization of virus-specific immune responses to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) is important to understanding the early virus-host interactions that may determine the course of virus infection and disease. Using a comprehensive panel of serological assays, we have previously demonstrated a complex and lengthy maturation of virus-specific antibody responses elicited by attenuated strains of SIV that was closely associated with the development of protective immunity. In the present study, we expand these analyses to address several questions regarding the nature of the virus-specific antibody responses to pathogenic SIV, SIV/HIV-1 (SHIV), and HIV-1 infections. The results demonstrate for the first time a common theme of antibody maturation to SIV, SHIV, and HIV-1 infections that is characterized by ongoing changes in antibody titer, conformational dependence, and antibody avidity during the first 6 to 10 months following virus infection. We demonstrate that this gradual evolution of virus-specific antibody responses is independent of the levels of virus replication and the pathogenicity of the infection viral strain. While the serological assays used in these studies were useful in discriminating between protective and nonprotective antibody responses during evaluation of vaccine efficacy with attenuated SIV, these same assays do not distinguish the clinical outcome of infection in pathogenic SIV, SHIV, or HIV-1 infections. These results likely reflect differences in the immune mechanisms involved in mediating protection from virus challenge compared to those that control an established viral infection, and they suggest that additional characteristics of both humoral and cellular responses evolve during this early immune maturation.  相似文献   

4.
One mechanism of immune evasion utilized by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope glycoproteins is the presence of a dense carbohydrate shield. Accumulating evidence from in vitro and in vivo experiments suggests that alterations in N-linked glycosylation of SIV gp120 can enhance host humoral immune responses that may be involved in immune control. The present study was designed to determine the ability of glycosylation mutant viruses to redirect antibody responses to shielded envelope epitopes. The influence of glycosylation on the maturation and specificity of antibody responses elicited by glycosylation mutant viruses containing mutations of specific N-linked sites in and near the V1 and V2 regions of SIVmac239 gp120 was determined. Results from these studies demonstrated a remarkably similar maturation of antibody responses to native, fully glycosylated envelope proteins. However, analyses of antibodies to defined envelope domains revealed that mutation of glycosylation sites in V1 resulted in increased antibody recognition to epitopes in V1. In addition, we demonstrated for the first time that mutation of glycosylation sites in V1 resulted in a redirection of antibody responses to the V3 loop. Taken together, these results demonstrate that N-linked glycosylation is a determinant of SIV envelope B-cell immunogenicity in addition to in vitro antigenicity. In addition, our results demonstrate that the absence of N-linked carbohydrates at specific sites can influence the exposure of epitopes quite distant in the linear sequence.  相似文献   

5.
6.
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.  相似文献   

7.
Sera from SIV-infected macaques were found to contain antibodies that reacted with conformation-dependent, group-specific determinants on the SIV envelope protein gp130. These conformation-dependent antibodies exhibited virus neutralizing activity; their presence was associated with protection in vaccine studies. The properties of these antibodies are quite similar to those that have been identified in sera from HIV-infected human subjects. These data suggest that the SIV envelope gp130 remains a candidate for subunit vaccine studies.  相似文献   

8.
During progression to AIDS in simian immunodeficiency virus (SIV) Mne-infected macaques, viral variants are selected that encode sequences with serine and threonine changes in variable region 1 (V1) of the surface component of the viral envelope protein (Env-SU). Because these serine and threonine amino acid changes are characteristic of sites for O-linked and N-linked glycosylation, we examined whether they were targets for modification by carbohydrates. For this purpose, we used several biochemical methods for analyzing the Env-SU protein encoded by chimeras of SIVMneCL8 and envelope sequences cloned from an SIVMneCL8-infected Macaca nemestrina during clinical latency and just after the onset of AIDS. The addition of an N-linked glycan was demonstrated by changes in the electrophoretic mobility of Env-SU, and this was verified by specific glycanase digestions and a detailed analysis of the molecular mass of partially purified Env-SU by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Molecular mass calculations by MALDI-TOF MS also demonstrated an increased mass, from 102.3 to 103.5 kDa, associated with serine and threonine residues predicted to be O-linked glycosylation sites. Together, these data provide the first direct evidence that the carbohydrate profile of Env-SU is distinct in SIV variants that evolve during infection of the host. Moreover, our studies show that these changes in glycosylation in V1 were directly associated with changes in antigenicity. Specifically, serine and threonine changes in V1 allowed the virus to escape neutralization by macaque sera that contained antibodies that could neutralize the parental virus, SIVMneCL8. The escape from antibody recognition appeared to be influenced by either O-linked or N-linked carbohydrate additions in V1. Moreover, when glycine residues were engineered at the positions where serine and threonine changes evolve in V1 of SIVMneCL8, there was no change in antigenicity compared to SIVMneCL8. This suggests that the amino acids in V1 are not part of the linear epitope recognized by neutralizing antibody. More likely, V1-associated carbohydrates mask the major neutralizing epitope of SIV. These experiments indicate that the selection of novel glycosylation sites in the V1 region of envelope during the course of disease is driven by humoral immune responses.  相似文献   

9.
An antibody phage display library was constructed from RNA extracted from lymph node cells of a simian immunodeficiency virus (SIV)-infected long-term-nonprogressor macaque. Seven gp120-reactive Fabs were obtained by selection of the library against SIV monomeric gp120. Although each of the Fabs was unique in sequence, there were two distinct groups based on epitope recognition, neutralizing activity in vitro, and molecular analysis. Group 1 Fabs did not neutralize SIV and bound to a linear epitope in the V3 loop of the SIV envelope. In contrast, two of the group 2 Fabs neutralized homologous, neutralization-sensitive SIVsm isolates with high efficiency but failed to neutralize heterologous SIVmac isolates. Based on competition enzyme-linked immunosorbent assays with mouse monoclonal antibodies of known specificity, these Fabs reacted with a conformational epitope that includes domains V3 and V4 of the SIV envelope. These neutralizing and nonneutralizing Fabs provide valuable standardized and renewable reagents for studying the role of antibody in preventing or modifying SIV infection in vivo.  相似文献   

10.
Genetic evolution of the simian immunodeficiency virus (SIV) envelope glycoprotein was evaluated in a group of six macaques (Macaca nemestrina) infected with the molecularly cloned, moderately pathogenic SIVsm62d. The extent of envelope evolution was subsequently evaluated within the context of the individual pattern of viremia and disease outcome. Two macaques in this cohort developed AIDS by 1.5 years postinoculation (progressors), whereas the remaining four macaques remained asymptomatic (nonprogressors). Compared with the nonprogressor macaques, the two progressor macaques exhibited higher persistent plasma viremia, higher homologous neutralizing antibody titers, and more extensive mutation and evolution in the V1 region of envelope. Although clearly distinct in each of these parameters from the progressors, the four nonprogressors exhibited more individual variability with respect to the extent of persistent viremia and genetic evolution of the V1 region of envelope. The extent of V1 envelope varied from no apparent V1 evolution in a macaque with good viral containment to extensive evolution in one macaque with persistent viremia. This study underscores the critical role of persistent replication in the genetic evolution of SIV.  相似文献   

11.
Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in defining sensitivity to serum antibody neutralization.  相似文献   

12.
Ag-specific CD4(+) Th cells play a key role in the development, maturation, and maintenance of pathogen-specific humoral and cellular immune responses. To define the fine specificity of broadly reactive Th responses associated with mature immunity in a lentiviral system, we analyzed peptide-specific Th responses in eight macaques chronically infected with a reference live attenuated SIV at 12-14 mo postinoculation. All macaques had stable immunocompetent Th cells at the time of analysis, and a unique array of Th responses to 20-mer overlapping peptides from envelope (Env) and Gag was identified for each macaque, which were then used to define a set of 31 broadly reactive peptide epitopes. Only 5 of the 31 broadly reactive Th epitope peptides mapped to the surface (SU) domain of Env. Interestingly, these were all confined to two conserved nonglycosylated regions toward the carboxyl terminus of SU, suggesting a structural influence of glycosylation on development of Th responses. Gag and the Env transmembrane proteins contained the majority of broadly reactive peptide epitopes (12 and 14 peptides, respectively), which were uniformly distributed throughout their sequence. This study defines for the first time broadly reactive Th epitope peptides of SIV Env and Gag proteins that are associated with enduring broadly protective vaccine immunity to attenuated SIV, which may be used for the design and evaluation of experimental vaccines. Moreover, the data suggest that extensive glycosylation of SU may provide yet another immune escape mechanism developed by lentiviruses to restrict the breadth of Th repertoire to SU, a major immunologically exposed protein of the virus.  相似文献   

13.
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.  相似文献   

14.
The rate of disease development in simian immunodeficiency virus (SIV) infection of macaques varies considerably among individual macaques. While the majority of macaques inoculated with pathogenic SIV develop AIDS within a period of 1 to 2 years, a minority exhibit a rapid disease course characterized by absence or transience of humoral and cellular immune responses and high levels of virus replication with widespread dissemination of SIV in macrophages and multinucleated giant cells. The goal of this study was to examine viral evolution in three SIVsmE543-3-inoculated rapid progressors to determine the contribution of viral evolution to the development of rapid disease and the effect of the absence of immune pressure upon viral evolution. PCR was used to amplify and clone the entire SIV genome from tissues collected at necropsy, and the course of viral evolution was assessed by env sequences cloned from sequential plasma samples of one rapid progressor (RP) macaque. The majority of sequence changes in RP macaques occurred in the envelope gene. Substitutions were observed in all three animals at specific conserved residues in envelope, including loss of a glycosylation site in V1/V2, a D-to-N/V substitution in a highly conserved GDPE motif, and a P-to-V/H/T substitution in the V3 loop analog. A cell-cell fusion assay revealed that representative env clones utilized CCR5 as a coreceptor, independent of CD4. The selection of specific substitutions in envelope in RP macaques suggests novel selection pressures on virus in such animals and suggests that viral variants that evolve in these animals may play a role in disease progression.  相似文献   

15.
Increasing evidence suggests that an effective AIDS vaccine will need to elicit both broadly reactive humoral and cellular immune responses. Potent and cross-reactive neutralization of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) by polyclonal and monoclonal antibodies is well documented. However, the mechanisms of antibody-mediated neutralization have not been defined. The current study was designed to determine whether the specificity and quantitative properties of antibody binding to SIV envelope proteins correlate with neutralization. Using a panel of rhesus monoclonal antibodies previously characterized for their ability to bind and neutralize variant SIVs, we compared the kinetic rates and affinity of antibody binding to soluble envelope trimers by using surface plasmon resonance. We identified significant differences in the kinetic rates but not the affinity of monoclonal antibody binding to the neutralization-sensitive SIV/17E-CL and neutralization-resistant SIVmac239 envelope proteins that correlated with the neutralization sensitivities of the corresponding virus strains. These results suggest for the first time that neutralization resistance may be related to quantitative differences in the rates but not the affinity of the antibody-envelope interaction and may provide one mechanism for the inherent resistance of SIVmac239 to neutralization in vitro. Further, we provide evidence that factors in addition to antibody binding, such as epitope specificity, contribute to the mechanisms of neutralization of SIV/17E-CL in vitro. This study will impact the method by which HIV/SIV vaccines are evaluated and will influence the design of candidate AIDS vaccines capable of eliciting effective neutralizing antibody responses.  相似文献   

16.
The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved.  相似文献   

17.
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.  相似文献   

18.
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.  相似文献   

19.
Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI.  相似文献   

20.
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号