首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the origin of endoreduplicated cells induced by DNA-synthesis inhibitors, V79 Chinese hamster cells were treated with 1-beta-D-arabinofuranosylcytosine (araC). During the treatment, BrUdR was present in the culture medium. If endoreduplicated cells originate from cells which have undergone rereplication of DNA segments randomly distributed over the genome during araC treatment, the diplochromosomes should exhibit lightly stained bands. The data indicate that endoreduplicated cells originate from cells blocked at the G2 stage of the cell cycle rather than from cells which have undergone an aberrant rereplication during araC treatment.  相似文献   

2.
The frequency of X-ray-induced chromosome aberrations in G1 ML-1 mouse myeloid leukemia cells and normal mouse bone marrow cells increased with post-irradiation incubation with the DNA-repair resynthesis inhibitor 1-beta-D-arabinofuranosylcytosine (araC), but the frequency of aberrations in the leukemic cells increased with quite a different time response compared to the normal cells. Irradiated normal mouse bone marrow cells had a rapid increase in the frequency of chromosome exchanges and deletions with increasing araC incubation time, for example, an increase was observed with 0.5 h araC incubation. In contrast, the ML-1 cells did not have a significant increase in aberrations until 1-2 h post-irradiation incubation with araC. These results suggest that the ML-1 cells, per unit time, initially undergo less repair of the X-ray-induced DNA damage that can be converted into chromosome aberrations. We previously showed that the ML-1 cells have a higher frequency of X-ray-induced chromosome aberrations compared to normal cells and the results presented here indicate that a slower rate of repair resynthesis is contributing to the increased sensitivity of the ML-1 cells.  相似文献   

3.
We previously reported that the organotin triphenyltin chloride (TPTC), which has been widely used as an anti-fouling coating for fishing nets and ship bottoms, potentiated clastogen-induced chromosome abberrations during the G2 phase of the cell cycle. In this communication, CHO cells treated with mitomycin C (MMC) were post-treated with TPTC in the presence and absence of other agents - cytosine-1-β-d-arabinofuranoside (araC), hydroxyurea, or caffeine - having a similar effect during the G2 phase of the cell cycle. The potentiating effect of araC was completely inhibited in the presence of TPTC at the concentration at which TPTC showed its potentiating effect, suggesting that potentiating effects of TPTC and araC are antagonistic. On the other hand, combined treatment with TPTC and caffeine or hydroxyurea showed a potentiating effect almost equal to the sum of the potentiating effects of each given separately.  相似文献   

4.
S K Das 《Mutation research》1988,207(3-4):171-177
.3-1.0 microM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1-2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 microM araC-treated cells. The cell cycle activated by caffeine in 0.3 microM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 microM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with less than G1 DNA content.  相似文献   

5.
《Mutation Research Letters》1988,207(3-4):171-177
0.3–1.0 σmM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1–2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 μM araC-treated cells. The cell cycle activated by caffeine in 0.3 μM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 μM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with < G1 DNA content.  相似文献   

6.
The effects of UVC radiation (lambda = 254 nm, 85 J/m2) and/or 1-beta-D-arabino-furanosylcytosine (araC, 2 x 10(-3) M, 2 h) on two mouse lymphoma cell lines, UVC-sensitive and X-ray resistant L5178Y-R and UVC-resistant and X-ray sensitive L5178Y-S, were investigated. AraC treatment inhibited the semiconservative DNA replication to 1.4% and 3.8% in L5178Y-R and L5178Y-S cells, respectively, and decreased the sedimentation distance of nucleoids from the cells of both lines. The shortening of sedimentation distances induced by UVC and araC treatment was 8.1 mm for L5178Y-R cells and 11.8 mm for L5178Y-S, and indicated a higher number of DNA breaks in L5178Y-S cells. Assuming that such breaks are the result of the inhibition of DNA repair replication by araC, we conclude that L5178Y-S cells have a greater number of repaired sites than L5178Y-R cells.  相似文献   

7.
To determine where in the cell cycle Chinese hamster ovary cells die following heating in G1, a mild hyperthermia treatment, i.e., 10 or 11.5 min at 45.5 degrees C, resulting in 40-50% cell kill was used. After a 7-14-h delay in G1, the cells heated in G1 eventually entered S phase and replicated all their DNA. Both an autoradiographic analysis with tritiated thymidine and a bromodeoxyuridine-propidium iodide bivariate analysis by flow cytometry revealed that both clonogenic and nonclonogenic cells were delayed in progression through S phase for at least 4 h. Then they completed replication of all their DNA and entered G2. Alkaline sucrose gradient sedimentation analysis revealed that these heated cells could complete replicon elongation into cluster-sized molecules of 120-160 S which persisted for 2-12 h after heating. However, further replicon elongation into multicluster-sized molecules greater than 160 S required an additional 12 h in heated cells compared to the 4 h needed in unheated control cells. Our results when compared with the literature suggest that when G1 cells are heated to a survival level of about 50%, the nonclonogenic cells recover from a long delay in G1, traverse S at a reduced rate, and then die either in G2 or as multinucleated cells after an aberrant division.  相似文献   

8.
This laboratory has recently reported the occurrence of DNA nicking at the onset of terminal skeletal myogenesis by using the technique of in situ nick translation (Dawson and Lough: Dev. Biol., 127:362-367, 1988). Because 1-beta-D-arabinofuranosylcytosine (araC), a cytocidal agent that is routinely used to removed dividing fibroblasts from myogenic cultures, inhibits DNA repair, it was of interest to determine whether araC treatment resulted in an accumulation of the endogenously created nicks. Thus, we have assessed the accumulation of DNA nicks in myotube cells during a 20 hour araC treatment period at the onset of terminal myogenesis (44-64 hours in vitro) by using three techniques: alkaline sucrose gradient density centrifugation, kinetic in situ nick translation, and cellular in situ nick translation. Although alkaline sucrose gradient centrifugation revealed no detectable nicking after 20 hours, kinetic in situ nick translation analysis revealed subtle but significant increases in DNA nicks caused by araC within 7 hours of drug application, and a 1.5-fold increase in DNA repair sites after 20 hours of drug treatment. That these observations reflected nicking specifically in myotube nuclei was determined by immunocytochemical localization of nicked sites after repair with a biotinylated nucleotide analog (biotin-11-dUTP). The effects of araC were only incompletely reversible, whether or not the drug was removed from the cultures, within 2 days of the treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recent reports from a number of laboratories have linked radiosensitivity in ataxia telangiectasia (A-T) to a large and prolonged block of some cells in G2 phase. Previous results from this laboratory, largely with one Epstein-Barr virus-transformed A-T lymphoblastoid cell line, presented evidence for a dramatic increase in the number of cells in G2 phase over controls during a 24-h period post irradiation. We describe here a study of the effect of gamma-radiation on G2 phase delay in several A-T cell lines. Based on previous results with several cell lines 24 h post irradiation was selected as the optimum time to discriminate between G2 phase delay in control and A-T cells. All A-T homozygotes showed a significantly greater number of cells in G2 phase, 24 h post irradiation, than observed in controls. A more prolonged delay in G2 phase after irradiation was seen in different A-T cell types that included lymphoblastoid cells, fibroblasts and SV40-transformed fibroblasts. At the radiation dose used it was not possible to distinguish A-T heterozygotes from controls.  相似文献   

10.
Using 1-β- -arabinofuranosylcytosine (AraC) which is an inhibitor of DNA-repair resynthesis, previous studies have shown that the frequency of chromosome-type aberrations is influenced by the rate of repair of araC-inhibitable DNA damage. The experiments described here are a further test of this hypothesis and also an attempt to determine if the different sensitivities of lymphocytes of different species to X-ray-induced aberrations are related to the rate of endonucleolytic incision during repair of DNA damage. Unstimulated lymphocytes from 4 species were exposed to an X-ray dose of 200 rad, and then incubated with araC for 0, 1, 2, 3 or 4 h. The aberration frequencies increased in all species up to 3–4 h. It was also clear that the rate of increase was different between species and was approximately proportional to the ratios of X-ray-induced aberrations observed in the absence of araC. For example, human lymphocytes are approximately twice as sensitive as rabbit lymphocytes to the induction of aberrations by X-rays and the rate of increase of aberrations in the presence of araC was about twice as great in human as rabbit lymphocytes. In addition, using 50, 100, 200 or 300 rad of X-rays and treating human lymphocytes for 0, 1, 2 or 3 h in araC post-irradiation, we have shown that the rate of increase in aberrations is proportional to the amount of araC-inhibitable DNA damage; with a limiting dose at about 50 rad. These results appear to provide a basis for interpreting differences in sensitivities to aberration induction among mammalian species.  相似文献   

11.
12.
Chinese hamster ovary (CHO) cells in vitro were treated with HgCl2 at various stages in the cell cycle and the effects of this chemical on cell survival, DNA replication, and cell division were observed. In terms of survival the early G1 cells were the most sensitive to treatment, followed by late G1 and early S, while mid S and late S-G2 treated cells were the least sensitive. Treatment with HgCl2 also resulted in reduced rates of DNA replication and delays in cell division. The early G1 treated cells showed substantially reduced rates of DNA replication followed by 4--5 h division delay. The early S and late S-G2 treated cells had some reduction in their rates of DNA replication followed by corresponding division delay of 2.5 h in the early S treated cells and 1 h in the late S-G2 treated cells.  相似文献   

13.
Stylonychia mytilus cells grown at 23 degrees C exhibit an immediate arrest at G1 and S stages in the cell cycle when subjected to a heat shock of 1 h at 35 degrees C. The duration of arrest was seen to be dependent on the stage at which heat shock was given. It varied from 3 to 7 h and was synchronously accompanied by the delay in the completion of cell cycle. G2 and the early dividing stage D1 were found to be even more sensitive to heat shock than G1 and S phases. Cells divide normally when heat shock was given at the late dividing stage D2. However, the G1 stage of progeny cells was prolonged to 30 h from normal 5.5 h. These observations have been compiled from the cytological studies of normal and heat-shocked Stylonychia mytilus cells at different stages of cell cycle.  相似文献   

14.
The effect of low pH on sister-chromatid exchanges (SCE), chromosomal aberrations (CA), and the cell cycle were investigated in Chinese hamster cells. The cells were treated in media over the pH range 7.2–5.4 during 24-h continuous or 3-h pulse treatments. In Chinese hamster ovary K1 cells, slight increases in SCE frequency were induced by 3-h pulse treatment with a 28-h recovery time. In Chinese hamster V79 379A cells, similar slight increases in SCE frequency were observed with both treatments. A severe delay in the cell cycle was noted in both cell types. DNA analysis with flow cytometry indicated that the cell cycle delay occured in S phase. CA were observed in the first metaphase. Multiple fixation times over a 27-h period were used to determine whether or not CA could be induced in cells exposed to low pH medium in more than one part of the cell cycle. Only a few chromatid gaps were induced when the cells were fixed at 0–9 h after the 3-h treatment, most probably representing cells that were treated in their G2 or late S phase. CA were induced in cells fixed between 12 and 27 h after the 3-h treatment. These cells were most probably treated in early S phase, in G1, or in the previous G2/M. These results suggest that low pH clastogenicity is S-dependent.  相似文献   

15.
A UV-responsive G2 checkpoint in rodent cells.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have studied the effect of UV irradiation on the cell cycle progression of synchronized Chinese hamster ovary cells. Synchronization of cells in S or G2 phase was accomplished by the development of a novel protocol using mimosine, which blocks cell cycle progression at the G1/S boundary. After removal of mimosine, cells proceed synchronously through the S and G2 phases, allowing manipulation of cells at specific points in either phase. Synchronization of cells in G1 was achieved by release of cells after a period of serum starvation. Cells synchronized by these methods were UV irradiated at defined points in G1, S, and G2, and their subsequent progression through the cell cycle was monitored. UV irradiation of G1-synchronized cells caused a dose-dependent delay in entry into S phase. Irradiation of S-phase-synchronized cells inhibited progression through S phase and then resulted in accumulation of cells for a prolonged interval in G2. Apoptosis of a subpopulation of cells during this extended period was noted. UV irradiation of G2-synchronized cells caused a shorter G2 arrest. The arrest itself and its duration were dependent upon the timing (within G2 phase) of the irradiation and the UV dose, respectively. We have thus defined a previously undescribed (in mammalian cells) UV-responsive checkpoint in G2 phase. The implications of these findings with respect to DNA metabolism are discussed.  相似文献   

16.
The aim of this study was to determine molecular mechanism(s) responsible for the reduced thymidine kinase activity (TK) observed earlier in an arabinosylcytosine (araC) resistant lymphoid cell line (H9-araC cells), which was obtained following continuous cultivation of H9 cells in the presence of 0.5 microM araC. Compared to H9 cells, in H9-araC cells TK1 and TK2 gene expressions were reduced to 17.7% and 2.5%, respectively, and the cellular AZT accumulation was diminished to 35.8%. These cells were also found cross-resistant to azidothymidine (>42-fold). There was no significant difference in the expression of MDR1, MRP4 or TK protein. The lack of correlation between the expressions of TK protein and TK1 and TK2 suggests that post-translational factors may also play a role in the reduced TK activity in H9-araC cells. These findings suggest that araC affects TK expression at the genetic level.  相似文献   

17.
18.
The effect of 4-deoxy-4-fluoro-D-mannose (4F-Man), a synthetic analog of D-mannose, on the synthesis of the glycoprotein (G) of vesicular stomatitis virus was examined. Nearly confluent monolayers of cultured BHK21 cells infected with vesicular stomatitis virus were incubated for 2 h with 4F-Man (0-10 mM) or for 1 h with tunicamycin (2 micrograms/ml) and then pulse-labeled with [35S]methionine or [3H]glucosamine. After a 90-min chase period, the cells were lysed and the viral proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. The 35S-labeled G protein from cells exposed to greater than or equal to 1 mM 4F-Man migrated more rapidly than G protein isolated from control cells and with the same electrophoretic mobility as the glycoprotein produced by cells treated with tunicamycin. When infected cells were labeled with [3H]glucosamine, little or no radioactivity was associated with G protein synthesized in the presence of greater than or equal to 1 mM 4F-Man. The conclusion that 4F-Man blocks the glycosylation of the G protein was supported by experiments which demonstrated that the fluorosugar inhibits the synthesis of lipid-linked oligosaccharides.  相似文献   

19.
Fluorescence microscopy and assays of the cytotoxicity of liposome-encapsulated cytosine arabinoside (araC) have been used to examine the interactions of CV-1 cells with pH-sensitive liposomes, combining phosphatidylethanolamine (PE) with oleic acid or with double-chain protonatable amphiphiles, and with pH-insensitive liposomes combining phosphatidylcholine (PC) and phosphatidylglycerol (PG). Fluorescence-microscopic observations indicate that double-chain protonatable amphiphiles remain tightly associated with pH-sensitive liposomes during incubations with CV-1 cell monolayers, and that cellular uptake of liposomes is strongly promoted by transferrin coupled to the liposome surface. Liposome-encapsulated araC showed much greater cytotoxicity toward CV-1 cells than did the free drug at equivalent concentrations under the same conditions. The cytotoxicity of encapsulated araC was strongly enhanced by liposome-conjugated transferrin and was maximal using pH-sensitive liposomes combining PE with the double-chain protonatable amphiphile N-(N'-oleoyl-2-aminopalmitoyl)serine. However, the drug was also markedly more cytotoxic when encapsulated in other types of transferrin-conjugated liposomes, including pH-insensitive PC/PG/cholesterol liposomes, than in the free form. The cytotoxicity of liposome-encapsulated araC is significantly attenuated by the nucleoside transport inhibitor nitrobenzothioinosine, and fluorescence microscopy using calcein-containing liposomes provides no evidence for efficient fusion between cellular membranes and any of the types of liposomes examined here. Based on these observations, we suggest that the major mechanism for cytoplasmic delivery of liposome-encapsulated araC is the carrier-mediated transport of drug that has been released from liposomes into the endosomal and/or the lysosomal compartments.  相似文献   

20.
1. Conjugates of 1-beta-D-arabinofuranosylcytosine (araC) with polysaccharides containing carboxyl groups, such as polygalacturonic acid (PGA) and carboxymethylated yeast beta-D-glucan (CMG) were prepared. 2. Activation of the polysaccharidic carboxyl group by isobutylchloroformiate and formation of a peptide bond via 4-NH2 group of araC was used for a coupling reaction. 3. Elementary analysis, u.v. and i.r. spectra confirmed the structures of the conjugates. 4. The conjugates were most stable against the hydrolysis under the mild acid conditions. 5. It was also shown that under the physiological conditions trypsin catalyze the conjugate hydrolysis and the catalytic effect is higher than that of chymotrypsine. 6. It is suggested that trypsin or trypsin-like proteases could participate in the hydrolysis of the conjugates in vivo. PGA-araC and CMG-araC showed 1.5- or 2.5-times higher antileukemic activity than both free araC or polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号