首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation of the tetrameric alpha 2-macroglobulin molecule into two half-molecular fragments, which occurs at pH less than 4.5, has been investigated using the small-angle neutron scattering method, and test of trypsin binding activity. Best fit with the relative forward scattering of neutrons is obtained for a model where the dissociation of the protein is driven by the uptake of H+ on altogether four acid-base groups, one per monomeric subunit of alpha 2-macroglobulin. These groups are not (or only slightly) accessible in the native tetramer, but become exposed to the solvent after dissociation of the protein. The H(+)-binding constant obtained for these groups, after dissociation of the protein, log K1 in the range 4.2-4.5, suggests that they are most probably carboxylate groups. From the about 10% increase in the radius of gyration, which occurs when lowering the pH from 4.5 to 2.0, we can conclude that the dissociation is associated with a change in structure of the protein. Tests of trypsin binding show that there is also an irreversible loss in trypsin binding activity, which is directly related to the fraction of dissociated protein. Thus, at pH less than 4.5, there is a transition of alpha 2-macroglobulin which results simultaneously in dissociation, disorganisation of the conformation of the subunits and loss in activity.  相似文献   

2.
Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon.  相似文献   

3.
Based upon measurements of the sedimentation coefficient and the Stokes radii, three forms of the oxysterol-binding protein were identified. The unliganded binding protein was the largest (7.7 S, Stokes radius = 71.6 A, Mr = 236,000) was relatively asymmetric (f/f0 = 1.7), and was composed of at least three subunits. Binding of 25-hydroxycholesterol was associated with a reduction in the size of the protein (7.5 S, Stokes radius = 50 A, Mr approximately 169,000) and an increase in symmetry (f/f0 = 1.4), due to the loss of a subunit of Mr approximately 67,000. At pH 6 or lower, the Mr = 169,000 sterol-protein complex was altered so that reversible dissociation to give a smaller (4.2 S, Stokes radius = 53 A, Mr = 97,000) more asymmetric (f/f0 = 1.8) sterol-protein complex occurred when it was sedimented in a sucrose gradient buffered at pH 7.4 containing 0.3 M KCl and 2.5 M urea. Irreversible dissociation of the 7.5 S, Mr = 169,000 form to a 4.2 S form occurred spontaneously when the complex in whole cytosol buffered at pH 7.8 was allowed to stand overnight at 0 degree C, or when the partially purified complex was incubated at pH 5.5 at 0 degree C for several days. The partially purified, unliganded binding protein was unstable at 0 degree C (approximately 75% loss of binding activity in 24 h) whereas the liganded protein was stable for 7 days at 0 degree C although irreversible conversion to a 4.2 S form occurred under some conditions. Rates of sterol binding and dissociation were increased in the presence of 2.5 M urea at pH 7.4 or when the pH was lowered to 5.5 Kd values were not greatly altered under the various incubation conditions.  相似文献   

4.
1. The 3':5'-cyclic AMP phosphodiesterase in the microsomal fraction of baker's yeast is highly specific for cyclic AMP, and not inhibited by cyclic GMP, cyclic IMP or cyclic UMP. Catalytic activity is abolished by 30 micrometer-EDTA. At 30 degrees C and pH8.1, the Km is 0.17 micrometer, and theophylline is a simple competitive inhibitor with Ki 0.7 micrometer. The pH optimum is about 7.8 at 0.25 micrometer-cyclic AMP, so that over the physiological range of pH in yeast the activity changes in the opposite direction to that of adenylate cyclase [PH optimum about 6.2; Londesborough & Nurminen (1972) Acta Chem. Scand. 26, 3396-3398].2. At pH 7.2, dissociation of the enzyme from dilute microsomal suspensions increased with ionic strength and was almost complete at 0.3 M-KCl. MgCl2 caused more dissociation than did KCl or NaCl at the same ionic strength, but at low KCl concentrations binding required small amounts of free bivalent metal ions. In 0.1 M-KCl the binding decreased between pH 4.7 and 9.3. At pH 7.2 the binding was independent of temperature between 5 and 20 degrees C. These observations suggest that the binding is electrostatic rather than hydrophobic. 3. The proportion of bound activity increased with the concentration of the microsomal fraction, and at 22 mg of protein/ml and pH 7.2 was 70% at I0.18, and 35% at I0.26. Presumably a substantial amount of the enzyme is particle-bound in vivo. 4. At 5 degrees C in 10 mM-potassium phosphate, pH 7.2, the apparent molecular weight of KCl-solubilized enzyme decreased with enzyme concentration from about 200 000 to 40 000. In the presence of 0.5M-KCl, a constant mol.wt. of about 55 000 was observed over a 20-fold range of enzyme concentrations.  相似文献   

5.
The kinetics of binding and dissociation for the progesterone-binding globulin (PBG)-progesterone complex have been measured as a function of pH. The association rate constant appears to be independent of pH from pH to 10 with an average value of kon = 8.5 X 10(7)M-1 S-1. The dissociation rate constant is strongly pH dependent with the dependency defined by: koff = k0 (1 + [H+]/K1 + K2/[H+])(1 + K3*/[H+])/(1 + K3/[H+]). The best values for the various parameters were k0 = 0.0785 s-1, pK1 = 5.30, pK2 = 10.54, pK3* = 7.41, and pK3 = 7.21. Simpler expressions were inadequate to fit the data, and it was concluded that at least three ionizing residues are responsible for the stability of the PBG-progesterone complex. The affinity constant was determined by equilibrium dialysis over the range of pH 3 to 12. The ratio of the association and dissociation rate constants is in agreement with the affinity constant from pH 6.5 to 10.5. The influence of pH on the conformation and binding activity of PBG was also investigated. Denaturation by acid, base, or guanidine hydrochloride leads to a reversible loss of binding activity. Regain of binding activity in all cases is slow with half-times of 0.5 to 2.7 h, depending on conditions. The rate of acid denaturation was found to be incompletely protonated at pH 1.4, suggesting a buried carboxylic acid residue. The slow renaturation of PBG might be due to the difficulty of burying a charged residue in the protein's interior coupled with steric hindrance by the large carbohydrate moiety of PBG.  相似文献   

6.
Binding of ligands to the catalytic center of mammalian triosephosphate isomerase (TPI) induces a conformational change(s) that enhances the specific deamidation of Asn71 at the subunit interface. Deamidation initiates dissociation and degradation of the enzyme in vivo and in vitro. We have utilized circular dichroism spectroscopy to examine the conformational changes in the enzyme upon ligand binding and subunit dissociation/reassociation. Native TPI from rabbit, chicken, and yeast exhibit similar spectra at pH 7.5, but are substantially different at pH 9.5. Covalent reaction of the active site Glu 165 with the substrate analogue 3-chloroacetol phosphate results in a conformational change (decrease in beta-sheet) which is similar in TPI from all three species. Reversible dissociation of the dimeric enzyme in guanidine followed by dialysis, although permitting full recovery of catalytic activity, results in refolded dimers with decreased alpha-helix. These conformational changes induced by ligand binding, pH, or reversible dissociation explain, in part, the differences in the chemical and physical properties of the enzyme from the three species at alkaline pH, the increased lability of the dissociated/reassociated enzyme, and corroborate 31P NMR data on substrate-induced conformational changes. These studies also support the concept of molecular wear and tear whereby ligand binding at the catalytic center induces conformational changes that increase the probability of covalent modification and ultimate degradation of the protein.  相似文献   

7.
We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism.  相似文献   

8.
Purification of the c-fos enhancer-binding protein.   总被引:45,自引:20,他引:25       下载免费PDF全文
We have purified the c-fos enhancer-binding protein from HeLa cell nuclear extracts. The key purification steps involved chromatography on a nonspecific DNA affinity column, from which binding activity and other protein were eluted at low salt concentrations, followed by chromatography on a specific oligonucleotide affinity column, from which the enhancer binding activity was specifically eluted at high salt concentrations. The purified protein had a strong affinity for the c-fos enhancer dyad symmetry sequence, with an equilibrium dissociation constant of 3.3 x 10(-11) M. This affinity was at least 50,000-fold stronger than that found for nonspecific DNA sequences.  相似文献   

9.
We have measured the dependencies of both the dissociation rate of specifically bound EcoRI endonuclease and the ratio of non-specific and specific association constants on water activity, salt concentration, and pH in order to distinguish the contributions of these solution components to specific and non-specific binding. For proteins such as EcoRI that locate their specific recognition site efficiently by diffusing along non-specific DNA, the specific site dissociation rate can be separated into two steps: an equilibrium between non-specific and specific binding of the enzyme to DNA, and the dissociation of non-specifically bound protein. We demonstrated previously that the osmotic dependence of the dissociation rate is dominated by the equilibrium between specific and non-specific binding that is independent of the osmolyte nature. The remaining osmotic sensitivity linked to the dissociation of non-specifically bound protein depends significantly on the particular osmolyte used, indicating a change in solute-accessible surface area. In contrast, the dissociation of non-specifically bound enzyme accounts for almost all the pH and salt-dependencies. We observed virtually no pH-dependence of the equilibrium between specific and non-specific binding measured by the competition assay. The observed weak salt-sensitivity of the ratio of specific and non-specific association constants is consistent with an osmotic, rather than electrostatic, action. The seeming lack of a dependence on viscosity suggests the rate-limiting step in dissociation of non-specifically bound protein is a discrete conformational change rather than a general diffusion of the protein away from the DNA.  相似文献   

10.
We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffinity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4 degrees C by radioimmunoassay; the dissociation coefficient (Kd) was 2.39 x 10(-8) M-1 with 5.97 x 10(4) lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 x 10(5)/cell) rather than a significantly reduced dissociation constant (4.93 x 10(-8) M-1). At 4 degrees C, there was no measurable Gal-specific binding of the adherence protein to the Lec1 and 1dlD.Lec1 CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 micrograms/ml) to CHO cells was equivalent at 4 degrees C and 37 degrees C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 micrograms/ml). Gal-specific binding of the lectin at 4 degrees C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The Escherichia coli RecF protein possesses a weak ATP hydrolytic activity. ATP hydrolysis leads to RecF dissociation from double-stranded (ds)DNA. The RecF protein is subject to precipitation and an accompanying inactivation in vitro when not bound to DNA. A mutant RecF protein that can bind but cannot hydrolyze ATP (RecF K36R) does not readily dissociate from dsDNA in the presence of ATP. This is in contrast to the limited dsDNA binding observed for wild-type RecF protein in the presence of ATP but is similar to dsDNA binding by wild-type RecF binding in the presence of the nonhydrolyzable ATP analog, adenosine 5'-O-(3-thio)triphosphate (ATPgammaS). In addition, wild-type RecF protein binds tightly to dsDNA in the presence of ATP at low pH where its ATPase activity is blocked. A transfer of RecF protein from labeled to unlabeled dsDNA is observed in the presence of ATP but not ATPgammaS. The transfer is slowed considerably when the RecR protein is also present. In competition experiments, RecF protein appears to bind at random locations on dsDNA and exhibits no special affinity for single strand/double strand junctions when bound to gapped DNA. Possible roles for the ATPase activity of RecF in the regulation of recombinational DNA repair are discussed.  相似文献   

12.
A protein which showed high affinity for calcium ions was isolated from bull seminal vesicle secretion and seminal plasma. Its calcium-binding activity depended on the ionic strength and pH of the medium. The dissociation constant was 7-7 X 10(-7) M and there were 14 binding sites per protein molecule. The molecular weight of calcium-binding protein from bull seminal vesicle secretion, estimated by the gel filtration method, was 110,000. The protein may be involved in the regulation of the calcium ion level in seminal plasma.  相似文献   

13.
Summary It has previously been shown that a protein extracted fromGonyaulax polyedra strongly and specifically binds luciferin, the substrate of the bioluminescent reaction. This binding is markedly dependent on pH with tight binding at pH 8.0 and almost no binding at pH 6.5, as measured by two independent methods. A procedure for the determination of the dissociation constant (Kd) of the luciferin binding protein (LBP) is presented, and Kd is estimated to be7×10–9 M at pH 8.0, assuming an overall quantum yield of 0.1 for the bioluminescent reaction. With cells grown in a 12 h light — 12 h dark cycle, 5 to 10 times more LBP activity can be extracted from dark phase cells than from light phase cells. This rhythm persists in a circadian fashion in cultures maintained in constant dim light.Supported in part by a grant from the National Institutes of Health to J.W.H. (GM 19536)  相似文献   

14.
1-Anilinonaphthalene-8-sulfonic acid (ANS) noncompetitively inhibited enzyme activity of glutathione S-transferase P for both glutathione and 1-chloro-2,4-dinitrobenzene (Ki = 30 microM). Dissociation constant for ANS.GST-P complex calculated from the binding study was 15 microM. From the similar values of the inhibition constant and the dissociation constant, it was concluded that specific ANS binding caused the loss of enzyme activity. In the protein structural analysis by circular dichroism, the secondary structures remarkably changed by ANS binding in accordance with the decrease of enzymatic activities. The conformational change of the protein and the decrease in enzymatic activity were reversed by dissociation of ANS. This fact strongly suggested that the enzymatic activity was regulated by a nonsubstrate hydrophobic ligand.  相似文献   

15.
A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.  相似文献   

16.
The pH dependence of the apparent tetramer to dimer dissociation constant has been determined at 20 degrees for both oxy- and deoxyhemoglobins A and Kansas. These measurements were made by three different procedures: gel chromatography, sedimentation velocity, and kinetic methods in either of three buffer systems: 0.05 M cacodylate, Tris, or glycine with 1 mM EDTA and 0.1 M NaCl between pH 6.5 and 11. The tetramer-dimer dissociation constant of human oxyhemoglobin A decreases from about 3.2 X 10(-6) M at pH 6.0 to about 3.2 X 10(-8) M at pH 8.5. The slope of this line indicates that the dissociation of tetramer to dimer is accompanied by the uptake of about 0.6 protons per mol of tetramer in this region. The corresponding dissociation constant for deoxyhemoglobin in the same pH region increases apparently almost linearly from 1.0 x 10(-12) M at pH 6.5 to about 1.0 x 10(-5) M at pH 11. To dimer is associated with the release of about 1.6 protons per mol of tetramer. Comparison of these data with the known proton release accompanying the oxygenation of tetramers confirms that the pH dependence of oxygen binding by dimers must be very small. The present data predict that the overall proton release or uptake per oxygen bound by dimer should be less than 0.1. The tetramer-dimer dissociation equilibria of oxy- and deoxyhemoglobins above pH 8.5 have identical pH dependences. In this range the dissociation constant of deoxy-Hb is about one-tenth that of oxyhemoglobin. Human oxyhemoglobin Kansas is known to have an enhanced tetramer-dimer dissociation compared with that of hemoglobin A. Below pH 8.5 the tetramer-dimer dissociation constant of Hb Kansas is about 400 times greater than that of HbA in the absence of phosphate buffers. In contrast, the tetramer-dimer dissociation constants of deoxyhemoglobins A and Kansas appear to be identical. These findings are consistent with previous structural observations on these hemoglobins. The data on the tetramer-dimer dissociation of human hemoglobin were used to calculate the total free energy of binding of oxygen to the tetramer and the median oxygen pressure on the basis of fundamental linkage relations and a pH-independent estimate of the total free energy of binding oxygen to dimer. Simulated oxygen binding curves were generated with the equations of Ackers and Halvorson (Ackers, G. K., and Halvorson, H. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 4312-4316) by making two assumptions: (a) that the dimers are noncooperative and pH-independent in O2 binding and (b) that the distribution of cooperative energy in the oxygenation of tetramers is independent of pH. We have compared these simulations with experimental data obtained at low protein concentrations (30 to 124 muM heme) to show that the variation in oxygen affinity with pH can be described in terms of the subunit equilibria. We conclude that an accurate analysis of the contributions of individual oxygen binding steps to the Bohr effect cannot be made without considering the contributions of the dimers to oxygen binding...  相似文献   

17.
Lactogenic receptors from rat liver microsomal fraction ('microsomes') were extracted by treatment with 1% (w/v) Triton X-100. Triton X-100 exerts an inhibitory effect on both the binding reaction and the separation of the free hormone from the complex. The association and dissociation of 125I-labelled human somatotropin are time- and temperature-dependent processes. The association rate constant, k1, is 6.7 x 10(6) mol . litre-1 . min-1 at 25 decrees C, and the dissociation rate constant, k-1, is 1.1 x 10(-3) min-1 at 25 degrees C. Scatchard analysis of saturation data reveals the existence of a single class of receptors and that solubilization leads to a slight decrease in affinity and a sharp increase in binding capacity. The dissociation constant, Kd, of the solubilized preparation is 0.22 nM and the binding capacity 2900 fmol/mg of protein. Similar results were obtained from competition experiments. Binding of 125I-labelled human somatotropin to the solubilized receptors is specifically inhibited by hormones with lactogenic activity. Incubation of the solubilized preparation with trypsin resulted in an 80% decrease in binding activity. The solubilized form of the receptor has a slightly increased sensitivity to the inactivation by trypsin, heat and extremes of pH, with respect to the membrane-bound form.  相似文献   

18.
An auxin-binding protein can be solubilized from microsomal membranes of Zea mays using either Triton X-100 extraction of the membranes or buffer extraction of the acetone-precipitated membranes. This paper describes the properties of the binding protein solubilized by these two methods. The binding is assayed by gel filtration chromatography in the presence of naphthalene [2-14C]acetic acid. Binding is rapid and reversible with an optimum at pH 5. Both preparations show similar molecular weights by gel filtration (80,000 daltons) at pH 7.6 and 0.1 molar NaCl, and both aggregate at low ionic strength. They appear to be the same active molecular species. The binding activity is destroyed by trypsin, pronase or para-chloromercuribenzoic acid, but not significantly reduced by phospholipase C, DNase, RNase, or dithioerythritol. Since saturating amounts of naphthalene acetic acid protect the molecule from inhibition by para-chloromercuribenzoic acid, it is concluded that the binding protein has a sulfhydryl group at the binding site, or protects such a group in its binding conformation. The dissociation constant of the protein for naphthalene acetic acid is 4.6 × 10−8 molar with 30 picomoles of sites per gram of tissue fresh weight. Binding constants were estimated for 13 other natural and synthetic auxins by competition with naphthalene[2-14C]acetic acid. Their dissociation constants are in general agreement with published values for their binding to intact membranes and their biological activity, although several exceptions were noted. A supernatant factor from the same tissue changes the apparent affinity of the protein for naphthalene acetic acid. This factor may be the same one as has been previously reported to alter the affinity of intact microsomes for auxin.  相似文献   

19.
Summary The effects of pH, oxidation reduction compounds and trypsin on insulin binding, hexose transport, and activation of glycogen synthase were studied utilizing rat adipocytes. In this paper the effect of pH is examined; while in the subsequent two papers the effects of glutathione and trypsin are examined. Increase in pH from 6 to 8.5 increased labelled glucose oxidation, 2-deoxyglucose transport as well as labelled insulin binding to the receptor. Enhanced insulin binding was due to an increased rate of association k+1 with no effect the rate of dissociation k−1 resulting in a decreased equilibrium dissociation constant KD. Glycogen synthase activity was unaffected by increase in pH when adipocytes were incubated with or without glucose. Insulin in contrast to pH was effective in increasing the activity of glycogen synthase. With 2-deoxyglucose, % glycogen synthaseI activity was increased by an increase in pH. Glycogen synthase activity was thus stimulated by insulin by the direct mechanism, previously termed mechanism 1, involving the formation of a chemical mediator, and clearly distinguishable from the activation of hexose transport, previously termed mechanism 2(1). Increase in labelled glucose oxidation and in 2-deoxyglucose transport with increased pH, as well as insulin stimulation, was abolished by preincubation with trypsin, or cytochalasin B; suggesting that trypsin-sensitive and cytochalasin B-binding protein(s) presumably in the plasma membrane are involved in these effects of pH. Since increase in pH alone activates cell membrane-mediated hexose transport and insulin receptor binding under conditions where glycogen synthase is not activated, increase in pH acts presumably by a non-mediator mechanism. Insulin acts at the membrane to enhance further the effects of increased pH, via a mediator mechanism.  相似文献   

20.
The irreversible dissociation kinetics of complexes of M13-encoded gene-5 protein with the polynucleotides poly(dA) and M13 DNA was studied by means of stopped-flow experiments. A linear decay was found for all gene-5-protein.poly(dA) complexes and for the gene-5-protein.M13 DNA complexes for which the DNA lattice was completely saturated at the beginning of the dissociation experiments. Only at the end of the dissociation curve was a deviation from linearity observed. A single-exponential decay was found for the dissociation of gene-5-protein.M13 DNA complexes when the DNA was not completely saturated initially. These results could be interpreted by assuming that dissociation of bound protein is only possible from isolated binding sites, while during the dissociation, rearrangement of bound protein clusters takes place continuously, including the formation of newly isolated bound protein. This redistribution results from a translocation of the protein along the lattice, which, for the poly(dA) complex, is fast with respect to the dissociation step, but which is slow for the M13 DNA complex. During this process the equilibrium cluster distribution predicted by the theory of McGhee and Von Hippel is not maintained. The binding of gene-5 protein to poly(dA) or poly(dT) does not result in a broadening of the nucleotide resonances in the NMR spectra of these polynucleotides, as had been observed for E. coli DNA-binding protein and interpreted as an indication for a high rate of translocation of the protein on the polynucleotide. The absence of line broadening for gene-5-protein.polynucleotide complexes is caused by the high binding cooperativity. As a consequence the majority of the protein molecules are bound in a cluster which makes the concentration of isolated bound protein very low. This results in a decrease of the signal/noise ratio at higher degrees of binding, but does not lead to line broadening while fast translocation still occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号