首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous electron microscope study showed that chondrocytes from cephalopod cartilage possess a highly developed cytoskeleton and numerous cytoplasmic processes that ramify extensively through the tissue. We have now carried out a light microscope immunocytochemical study of chondrocytes from the orbital cartilage of Sepia officinalis to obtain indications as to the nature of the cytoskeletal components. We found clear positivity to antibodies against mammalian tubulin, vimentin, GFAP, and actin, but not keratin. The simultaneous presence of several cytoskeletal components is consistent with the hypothesis that cephalopod chondrocytes have the characteristics of both chondrocytes and osteocytes of vertebrates, which endow the tissue as a whole with some of the properties of vertebrate bone. We confirm, therefore, the presence in molluscs of the ubiquitous cytoskeletal proteins of metazoan cells that have remained highly conserved throughout phylogenetic evolution.  相似文献   

2.
Seventeen of sixty distal extremities of the thoracic aortas of 12-week-old control male turkeys and 37 of 40 distal extremities of the aortas of turkeys fed 0.07% beta-aminopropionitrile (BAPN) from 4 to 12 weeks of age contained areas of cartilaginous metaplasia when examined by light microscopy. The cartilaginous areas were generally elongated and located in the subendothelium of control turkeys, but a roundish area of cartilage was occasionally evident in the deep media. The magnitude of chondroplasia was enhanced by feeding BAPN; the extensive lesion usually extended from the subendothelium to deep in the media. Regardless of treatment, chondrocytes were pleomorphic, contained vacuoles, and had cytoplasmic processes. The cells were separated by pools of proteoglycans and connective tissue. The ultrastructure of chondrocytes in the aortas of both treatment groups was typical of this cell type. They had undulations or projections of the cell membranes. The cisternae of endoplasmic reticulum were dilated and contained electron-translucent material which was similar to extracellular proteoglycans. Golgi apparatus, free ribosomes, mitochondria, glycogen granules, filaments, and a centriole also were present in the cytoplasm. The extracellular matrix, which included collagenous and elastic fibers and also delicate fibrils and interconnecting matrix granules, separated adjacent chondrocytes by spaces of varying size.  相似文献   

3.
The death of chondrocytes and the loss of extracellular matrix are the central features in cartilage degeneration during Osteoarthritis (OA) pathogenesis. The mechanism by which chondrocytes are removed in OA cartilage are still not totally defined, although previous reports support the presence of apoptotic as well as non apoptotic signals. In addition, in 2004 Roach and co-workers suggested the term “Chondroptosis” to design the type of cell death present in articular cartilage, which include the presence of some apoptotic and autophagic processes. To identify the mechanisms, as well as the chronology by which chondrocytes are eliminated during OA pathogenesis, we decided to evaluate apoptosis (by active caspase 3 and TUNEL signal) and autophagy (by LC3II molecule and cytoplasmic vacuolization) using Immunohistochemistry and Western blot techniques in an animal OA model. During OA pathogenesis, chondrocytes exhibit modifications in their death process in each zone of the cartilage. At early stages of OA, the death of chondrocytes starts with apoptosis in the superficial and part of the middle zones of the cartilage, probably as a consequence of a constant mechanical damage in the joint. As the degenerative process progresses, high incidence of active caspase 3 as well as LC3II expression are observed in the same cell, which indicate a combination of both death processes. In contrast, in the deep zone, due the abnormal subchondral bone ossification during the OA pathogenesis, apoptosis is the only mechanism observed.  相似文献   

4.
The repair of articular cartilage following papain injection into the knee joint of the guinea pig was studied by light and electron microscopy, as well as by autoradiography using tritiated thymidine. Papain injection rapidly produced complete degradation of cartilage proteoglycan. Although a number of chondrocytes were also destroyed, the remaining chondrocytes showed mitotic cell division with resultant formation of cell clusters. Such chondrocytic regeneration, however, did not contribute significantly to the repair of cartilage tissue. On the other hand, mesenchymal cells proliferated from the transition zone and extended over the surface of the damaged cartilage. At the peripheral portion of the articular surface, they migrated and differentiated into chondrocytes with the formation of abundant intercellular matrix to produce hyaline cartilage. From these findings, it was apparent that mesenchymal cells in the transition zone were actively engaged in the repair of articular cartilage.  相似文献   

5.
Embryonic stem (ES) cells were used to investigate the target cell specificity and consequences of c-fos when expressed ectopically during embryonic development. Chimeric mice generated with different ES cell clones selected for high exogenous c-fos expression were not affected during embryonic development; however, a high frequency of cartilage tumours developed as early as 3-4 weeks of age apparently independent of the extent of chimerism. The tumours originated from cartilagenous tissues and contained many chondrocytes. Expression of exogenous c-fos RNA and Fos protein was observed during development but was highest in tumour tissues, predominantly in differentiating chondrocytes. A number of primary and clonal tumour-derived cell lines were established which expressed high levels of c-fos, c-jun as well as the cartilage-specific gene type II collagen and which gave rise to cartilage tumours in vivo, some of which also contained bone. Interestingly, the levels of c-Fos and c-Jun appeared to be coordinately regulated in the cell lines as well as in chimeric tissues. Thus, we demonstrate that chondrogenic cells and earlier progenitors are specially transformed by Fos/Jun and therefore represent a novel mesenchymal target cell for c-fos overexpression.  相似文献   

6.
The present study focused on the hypertrophic cell zone and the adjacent region of primary spongiosa in the mandibular condylar cartilage in growing rats (3 to 7 weeks old). In this cartilage, chondrocytes were not arranged in columns, and there was no clear distinction between longitudinal and transverse septum. The hypertrophic chondrocytes were not surrounded entirely by calcified matrix, and capillaries were in close contact with cartilage cells. The staining intensity of the pericellular matrix decreased in the lower hypertrophic cell zone in comparison with that in the upper part of the hypertrophic cell zone. Electron microscopic examinations indicated that the lowest hypertrophic cells contained lysosomes and pinocytotic vesicles. Some hypertrophic chondrocytes appeared to have been released from their lacunae and were observed in the region of the primary spongiosa. Hence it is suggested that the lowest hypertrophic chondrocytes in the rat mandibular condyle do not die but are released from their lacunae into the bone marrow. Further study is needed to determine whether or not these cells do indeed become osteoblasts and/or chondroclasts.  相似文献   

7.
A light microscopical study was conducted to ascertain the type of cells in the nucleus pulposus of the adult human intervertrebral disc. Three lumbar intervertebral discs were removed from each of 15 male and female adults at autopsy (ages ranged from 19 to 62 years). The tissue was fixed in formalin, decalcified in formic acid, dehydrated in a graded series of ethanol, embedded in paraffin, and serially sectioned at 7-10 micron. Tissue sections were affixed to albuminized glass slides and stained either by hematoxylin and eosin or hematoxylin and Van Gieson's stain. The cells of the bulk of the nucleus pulposus consisted of chondrocytes and a few fibroblasts; however, the subchondral matrix of the nucleus pulposos contained numerous stellate cells with (from 1 to 8) unusually long (up to 80 micron) primary cytoplasmic processes that often branch into secondary processes. The cell processes contained cytoplasmic varicosities at various intervals along their lengths; and their endings often expanded into bulbous, vesicle-filled process terminals. The surrounding extracellular matrix usually contained numerous, vesicle-filled, eosinophil matrix bodies. Morphological similarities of cytoplasmic varicosities, process terminals, and matrix bodies, as well as the apparent budding of process terminals, suggest that these previously unidentified cells are secreting an unknown matrix component into the subchondral matrix of the nucleus pulposus of the adult human.  相似文献   

8.
The subclavian glomera (aortic bodies) of young New Zealand white rabbits were studied with the light, fluorescence, and electron microscopes. Two cell types were identified: type I, granule-containing (chief) cells, and type II, agranular (sustentacular) cells. The type I cells possessed large nuclei, the normal complement of cytoplasmic organelles and numerous electron-opaque cytoplasmic granules. The type II cells were agranular with attenuated cytoplasmic processes which partially or completely ensheathed the type I cells. The glomera were well vascularized. Capillary endothelial cells contained numerous pinocytotic vesicles, but few fenestrae. Two profiles of nerve terminals were observed. One, apposing the type I cells, contained numerous electron-lucent vesicles, several dense-cored vesicles, mitochondria and possessed membrane specializations resembling those usually observed in synaptic zones. The other profile contained abundant mitochondria and a few electron-lucent and dense-cored vesicles. Structural specializations were not observed on the apposed membranes of these terminals or adjacent to type II cells. Fluorescence histochemistry revealed an intense yellow-green fluorescence in the glomera, which indicated the presence of biogenic amines, possibly primary catecholamines or an indolamine. The electron-opaque granules observed in the type I cells were believed to be the storage sites for these amines. The subclavian glomera were found to be morphologically similar to the carotid body which is a known chemoreceptor.  相似文献   

9.
Cartilage-derived growth factors, enhance proteoglycan synthesis in cultured chick-embryo chondrocytes, and have almost no effect on cell proliferation. Addition of cartilage derived growth factors to cartilage cells loaded with the fluorescent Ca2+ indicator quin 2, caused a rapid, concentration dependent decrease in cytoplasmic free Ca2+. This decrease persisted also in Ca2+-free medium, indicating that it is not mediated by a decrease in the passive permeability of cell membrane to Ca2+. Addition of the Ca2+ ionophore A23187, with or without cartilage derived factors, caused an increase in cytoplasmic free Ca2+ together with inhibition of proteoglycan synthesis and enhanced cell proliferation. The results may indicate that whereas cell proliferation in chondrocytes is signaled by an increase in cytoplasmic Ca2+ ([Ca2+]in), proteoglycan synthesis is signaled by a decrease in [Ca2+]in. The data lead to suggesting a mechanism for antagonistic regulation of cell proliferation and the expression of the differentiated state.  相似文献   

10.
The in Vitro Growth of Human Chondrocytes   总被引:2,自引:0,他引:2  
Autologous chondrocyte implantation (ACI) for the treatment of articular cartilage defects has been described by other workers, however, relatively few details of the in vitro growth of the cells have been published. Here we describe the release of cells from adult human articular cartilage and their growth characteristics in vitro.Cultures were successfully established from 29 of 30 biopsies taken from patients aged 20–72 year. No significant relationship was found between donor age and initial cell yield following cartilage digest, however, the time to primary confluence increased in direct proportion to age. Thereafter the kinetics of cell proliferation was independent of donor age.The proportion of apoptotic or necrotic cells in the cartilage digest was low and increased with time in culture only in those cells which remained non-adherent. Conversely, entry into cell cycle was restricted to those cells which had become adherent.These results illustrate that previously reported techniques for isolating and culturing chondrocytes are reproducible, that adherent chondrocytes have considerable proliferative potential, and that concern about cell growth and viability need not, in itself, limit the clinical application of ACI to younger patients.  相似文献   

11.
This study compares the collagen types present in rabbit ear cartilage with those synthesized by dissociated chondrocytes in cell culture. The cartilage was first extracted with 4M-guanidinium chloride to remove proteoglycans. This step also extracted type I collagen. After pepsin solubilization of the residue, three additional, genetically distinct collagen types could be separated by fractional salt precipitation. On SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis they were identified as type II collagen, (1 alpha, 2 alpha, 3 alpha) collagen and M-collagen fragments, a collagen pattern identical with that found in hyaline cartilage. Types I, II, (1 alpha, 2 alpha, 3 alpha) and M-collagen fragments represent 20, 75, 3.5, and 1% respectively of the total collagen. In frozen sections of ear cartilage, type II collagen was located by immunofluorescence staining in the extracellular matrix, whereas type I collagen was closely associated with the chondrocytes. Within 24h after release from elastic cartilage by enzymic digestion, auricular chondrocytes began to synthesize type III collagen, in addition to the above-mentioned collagens. This was shown after labelling of freshly dissociated chondrocytes with [3H]proline 1 day after plating, fractionation of the pepsin-treated collagens from medium and cell layer by NaCl precipitation, and analysis of the fractions by CM(carboxymethyl)-cellulose chromatography and SDS/polyacrylamide-gel electrophoresis. The 0.8 M-NaCl precipitate of cell-layer extracts consisted predominantly of type II collagen. The 0.8 M-NaCl precipitate obtained from the medium contained type I, II, and III collagen. In the supernatant of the 0.8 M-NaCl precipitation remained, both in the cell extract and medium, predominantly 1 alpha-, 2 alpha-, and 3 alpha-chains and M-collagen fragments. These results indicate that auricular chondrocytes are similar to chondrocytes from hyaline cartilage in that they produce, with the exception of type I collagen, the same collagen types in vivo, but change their cellular phenotype more rapidly after transfer to monolayer culture, as indicated by the prompt onset of type III collagen synthesis.  相似文献   

12.
K Kikukawa  K Suzuki 《Teratology》1992,46(5):509-523
The osteochondrodysplasia rat (ocd/ocd) is a lethal dwarfism. The ocd/ocd shows histological abnormalities of the epiphysis, characterized by a decrease in amount of glycosaminoglycans (GAGs) in the extracellular matrix (ECM). The present study describes histochemical and immunohistochemical distributions of GAGs, type II collagen, and fibronectin (FN) in abnormal humeral cartilage of the ocd/ocd fetuses on days 16-21 of gestation. A wide-spread region with severe necrosis was observed in the cartilage on days 20 and 21. The affected cartilage has small amounts of ECM, irregular columnizations, thinner hypertrophic zones, and expanded and pyknotic chondrocytes on days 16-21 of gestation. The severely expanded chondrocytes did not have cytoplasmic glycogens on days 19-21. Reactions for chondroitin sulfate (CS) and hyaluronic acid (HA) in the ECM were consistently lower in ocd/ocd than in +/+ during the entire period of observation, although there were granules immunoreactive to CS within the chondrocytes of ocd/ocd. The distribution of type II collagen seemed normal in relatively normal regions in the affected cartilage. Strong reactions for CS, HA, type II collagen, and FN were present in the necrotic region on days 20 and 21 of gestation. These findings suggest that the affected chondrocyte may have some defects in releasing ECM substances, which may be released by the process of cell rupture. We hypothesize that some defects in releasing processes inherent to the ocd/ocd cartilage may relate to cellular differentiation and cell death.  相似文献   

13.
In the repair of cartilage defects, autologous tissue offers the advantage of lasting biocompatibility. The ability of bovine chondrocytes isolated from hyaline cartilage to generate tissue-engineered cartilage in a predetermined shape, such as a human ear, has been demonstrated; however, the potential of chondrocytes isolated from human elastic cartilage remains unknown. In this study, the authors examined the multiplication characteristics of human auricular chondrocytes and the ability of these cells to generate new elastic cartilage as a function of the length of time they are maintained in vitro. Human auricular cartilage, harvested from patients 5 to 17 years of age, was digested in collagenase, and the chondrocytes were isolated and cultured in vitro for up to 12 weeks. Cells were trypsinized, counted, and passaged every 2 weeks. Chondrocyte-polymer (polyglycolic acid) constructs were created at each passage and then implanted into athymic mice for 8 weeks. The ability of the cells to multiply in vitro and their ability to generate new cartilage as a function of the time they had been maintained in vitro were studied. A total of 31 experimental constructs from 12 patients were implanted and compared with a control group of constructs without chondrocytes. In parallel, a representative sample of cells was evaluated to determine the presence of collagen. The doubling rate of human auricular chondrocytes in vitro remained constant within the population studied. New tissue developed in 22 of 31 experimental implants. This tissue demonstrated the physical characteristics of auricular cartilage on gross inspection. Histologically, specimens exhibited dense cellularity and lacunae-containing cells embedded in a basophilic matrix. The specimens resembled immature cartilage and were partially devoid of the synthetic material of which the construct had been composed. Analyses for collagen, proteoglycans, and elastin were consistent with elastic cartilage. No cartilage was detected in the control implants. Human auricular chondrocytes multiply well in vitro and possess the ability to form new cartilage when seeded onto a three-dimensional scaffold. These growth characteristics might some day enable chondrocytes isolated from a small auricular biopsy to be expanded in vitro to generate a large, custom-shaped, autologous graft for clinical reconstruction of a cartilage defect, such as for congenital microtia.  相似文献   

14.
15.
Doublecortin is expressed in articular chondrocytes   总被引:1,自引:0,他引:1  
Articular cartilage and cartilage in the embryonic cartilaginous anlagen and growth plates are both hyaline cartilages. In this study, we found that doublecortin (DCX) was expressed in articular chondrocytes but not in chondrocytes from the cartilaginous anlagen or growth plates. DCX was expressed by the cells in the chondrogenous layers but not intermediate layer of joint interzone. Furthermore, the synovium and cruciate ligaments were DCX-negative. DCX-positive chondrocytes were very rare in tissue engineered cartilage derived from in vitro pellet culture of rat chondrosarcoma, ATDC5, and C3H10T1/2 cells. However, the new hyaline cartilage formed in rabbit knee defect contained mostly DCX-positive chondrocytes. Our results demonstrate that DCX can be used as a marker to distinguish articular chondrocytes from other chondrocytes and to evaluate the quality of tissue engineered or regenerated cartilage in terms of their "articular" or "non-articular" nature.  相似文献   

16.
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.  相似文献   

17.
Human laryngeal cartilages, especially thyroid cartilage, exhibit gender-specific ageing. In contrast to male thyroid cartilages, the ventral half of the female thyroid cartilage plate remains unmineralized until advanced age. In cartilage specimens from laryngectomies and autopsies, apoptosis was studied immunohistochemically and the oxidative mitochondrial enzyme nicotinamide adenine dinucleotide hydride tetrazolium reductase (NADH-TR) was localized histochemically. In addition, very fresh specimens from laryngectomies were fixed under addition of ruthenium hexamine trichloride or tannin to fixation solution to study cell organelles of chondrocytes by electron microscopic methods. In general, apoptotic chondrocytes decreased in thyroid cartilages of both genders, especially after the second decade. In the age group 41–60 years, thyroid cartilage from male specimens revealed a significantly higher percentage of apoptotic cells than did thyroid cartilage from women (P = 0.004), whereas in the age groups 0–20 years and 61–79 years no statistically significant gender difference was determined. In general, thyroid cartilage from women contained more living chondrocytes into advanced age than men. Chondrocytes adjacent to mineralized cartilage were partly positive for apoptosis and NADH-TR and partly negative. Apoptotic chondrocytes often were localized in areas of asbestoid fibres where vascularization and mineralization took place first. Electron microscopy revealed remnants of chondrocytes in asbestoid fibres. Taken together, it can be assumed that some chondrocytes in thyroid cartilage die by apoptosis and that these chondrocytes are characterized by absent reactivity for the mitochondrial enzyme NADH-TR. A possible influence of sexual hormones on apoptotic death of thyroid cartilage cells requires further elucidation.  相似文献   

18.
Isolated syngeneic epiphyseal chondrocytes transplanted into a muscle formed cartilage in which matrix resorption and endochondral ossification began at the end of the second week after transplantation. After 56 days cartilage was converted into an ossicle. In 7-day-old intrarenal transplants, epiphyseal chondrocytes formed nodules of cartilage. In 10-day-old transplants, islands of bone appeared. Slight resorption of cartilage was first noted in 14-day-old transplants of chondrocytes. After eight weeks, transplants contained mainly bone. Intramuscularly transplanted rib chondrocytes formed cartilage which did not ossify. Nevertheless, bone islands appeared in intrarenal transplants of rib chondrocytes. Bone was not formed in allogeneic intrarenal transplants of epiphyseal or rib chondrocytes, but appeared in such transplants in animals immunosuppressed by anti-thymocyte serum and procarbazine. When spleen cells from animals immunized with allogeneic chondrocytes were transferred to immunosuppressed chondrocyte recipients two weeks after intrarenal chondrocyte transplantation, the majority of osteocytes in bone islands was dead. On the other hand, endochondral bone formed in intramuscular transplants of allogenic epiphyseal chondrocytes in immunosuppressed recipients was not damaged by sensitized spleen cells. This suggested that bone in 10- to 14-day-old intrarenal transplants of chondrocytes arose from injected cells and not by induction. To see whether bone was formed by chondrocytes or by some cells contaminating the chondrocyte suspension, the superficial layer of rib cartilage was removed by collagenase digestion and only more central chondrocytes were used for transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Summary A major factor in cellular cytotoxicity is the interaction between LFA-1 on leukocytes and ICAM-1 on targets. Because several inflammatory cartilage diseases are characterized by the presence of leukocyte infiltrates, the expression of ICAM-1 on human cartilage, cultured chondrocytes, and transplanted cartilage was investigated using monoclonal antibodies. Frozen tissue sections, chondrocytes in suspension, as well as total cellular mRNA were prepared from human cartilage samples. ICAM-1 expression was studied with two different monoclonal antibodies directed against ICAM-1 by immunohistochemical APAAP-staining and additional flow cytometric analyses. The expression of ICAM-1-mRNA in cartilage tissue was analyzed using the northern blot hybridization technique. Furthermore, chondrocytes were treated in culture with interleukin-1 (IL-1) and gamma-interferon (gamma-IFN). ICAM-1 expression after culture was quantified using flow cytometric analysis. We could detect ICAM-1 mRNA in cartilage tissue, however, the immunostaining of tissue sections using monoclonal antibodies did not give clear positive reactions. Isolated chondrocytes showed strongly positive staining patterns in comparison with adequate negative controls as assessed by flow cytometry. A dose-dependent increase of the expression of ICAM-1 on chondrocytes was observed when stimulated with IL-1 and gamma-IFN. Finally, two of the three studied transplanted autologous cartilage samples with advanced resorption showed the presence of ICAM-1 molecules as assessed by immunohistochemistry. This expression of ICAM-1 suggests that the molecule plays a role in severe cartilage inflammatory processes, where tissue damage leads to the exposure of chondrocyte surfaces.  相似文献   

20.
Osteoarthritis is characterized by many factors, including proteoglycan loss, decreased collagen stiffness, and increased cartilage hydration. Chondrocyte swelling also occurs, and correlates with the degree of osteoarthritis, however, the cause is unknown but might be related to alterations to their passive osmotic properties. We have used two-photon confocal laser scanning microscopy to measure the passive osmotic characteristics of in situ chondrocytes within relatively non-degenerate and degenerate human tibial plateau cartilage, and in chondrocytes isolated from relatively non-degenerate cartilage. Explants with bone attached were taken from a total of 42 patients undergoing arthroplasty and graded macroscopically and microscopically into two groups, grade 0 + 1 and grade 2 + 3. There was a significant increase in cartilage hydration between these two groups (P < 0.05), however, there was no change when medium osmolarity was varied over approximately 0-480 mOsm. The passive osmotic behavior of in situ chondrocytes (at 4 degrees C) was identical over a range of culture medium osmolarities ( approximately 0-515 mOsm), however, the maximum swelling of cells within degenerate cartilage and isolated chondrocytes was greater compared to those in non-degenerate cartilage. The swelling in the majority of in situ chondrocytes was accounted for by the reduced interstitial osmolarity occurring with cartilage degeneration. There was, however, a small population of in situ chondrocytes whose volume was in excess (>/=2,500 microm(3)) of that predicted from the decreased interstitial osmotic pressure. These results show that for the majority of cells studied, the differences in passive chondrocyte volume between relatively non-degenerate, degenerate, and isolated cells were entirely accounted for by changes to the extracellular osmolarity (180-515 mOsm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号