首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study concerned the response to freezing of Neurospora crassa conidia in four different states: air-dry, hydrated in water, hydrated in Vogel medium lacking only sucrose, or hydrated in complete Vogel medium. All hydrated conidia were incubated in one of the above media for various times before freezing and were then washed and frozen in distilled water. Viability was estimated by three techniques, and the agreement among them was good. Hydration of air-dry conidia was found to be very rapid and, once hydrated, the conidia were much more sensitive to rapid freezing than they were before hydration. Rapidly cooled conidia survived freezing to a much higher extent when the warming rate was rapid than when it was slow; slowly cooled conidia showed little or no dependence on the warming rate. This sensitivity to rapid cooling and slow warming was attributed to the effects of intracellular ice. The sensitivity to freezing could be reversed by dehydrating the conidia in vacuo before freezing; thus, it was concluded that the presence or absence of water is the determining factor in the initial sensitivity due to freezing. In water, the sensitivity remained constant from 2 min to 15 days after hydration. Although conidia hydrated in growth medium lacking sucrose remained metabolically inactive, their sensitivity to rapid freezing decreased as a function of time in the medium before freezing. The reason for this decreased sensitivity is not understood. Conidia hydrated in complete growth medium (i.e., containing sucrose) became metabolically active and, after the initial sensitivity associated with hydration, became increasingly more sensitive to freezing as a function of their time in the medium. Drying itself was deleterious to metabolically active conidia, and those that survived dehydration did not exhibit a large absolute increase in resistance to subsequent freezing. The increase in sensitivity to freezing and to drying seems associated with the presence of metabolic activity; however, the precise cause of the sensitization remains obscure.  相似文献   

2.
Jekkel  Zs.  Gyulai  G.  Kiss  J.  Kiss  E.  Heszky  L.E. 《Plant Cell, Tissue and Organ Culture》1998,52(3):193-197
Cryopreservation of somatic embryos of Aesculus hippocastanum L. cultured on nutritive media containing abscisic acid (ABA) at concentrations of 0.75 μM, 7.5 μM and 75.0 μM was evaluated for three cooling methods: (i) slow freezing with cryoprotectants, (ii) fast freezing with cryoprotectants, and (iii) fast freezing with desiccation techniques. The ‘cryoprotectant’ freezing techniques included the embryo pretreatment on ABA containing medium for 4 days, followed by cryoprotective treatment in liquid medium containing 0.5 M dimethylsulfoxide, 0.5 M glycerol, 1.0 M sucrose, and cooled at slow, and rapid rates. Embryos pretreated on a medium containing 0.75 μM ABA, and cooled to −35 °C at 1°C /min, held for 30 min at this transfer temperature and then immersed in liquid nitrogen (LN) had the best embryo recovery (43%). The ‘desiccation’ method involved an air drying step of similar ABA-pretreated, non-cryoprotected embryos followed by rapid cooling. Embryos precultured on 0.75 μM ABA, then subjected to a 4 h period of air desiccation (water content reduction to 13%) showed about the same level of survival (46%) as found with the ‘cryoprotectant’ slow freezing technique. The air-dry ‘desiccation’ method is easier to apply than the more complicated ‘cryoprotectant’ method. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing.  相似文献   

4.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

5.
The first successful freezing of early embryos to −196°C in 1972 required that they be cooled slowly at ∼1°C/min to about −70°C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to −70°C, the result is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/ chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

6.
P Mazur 《Cell biophysics》1990,17(1):53-92
The first successful freezing of early embryos to -196 degrees C in 1972 required that they be cooled slowly at approximately 1 degree C/min to about -70 degrees C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to -70 degrees C, the results is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

7.
Lyophilization is the most popular method for achieving improved stability of labile biopharmaceuticals, but a significant fraction of product activity can be lost during processing due to stresses that occur in both the freezing and the drying stages. The effect of the freezing rate on the recovery of herpes simplex virus 2 (HSV-2) infectivity in the presence of varying concentrations of cryoprotectant excipients is reported here. The freezing conditions investigated were shelf cooling (223 K), quenching into slush nitrogen (SN2), and plunging into melting propane cooled in liquid nitrogen (LN2). The corresponding freezing rates were measured, and the ice crystal sizes formed within the samples were determined using scanning electron microscopy (SEM). The viral activity assay demonstrated the highest viral titer recovery for nitrogen cooling in the presence of low (0.25% w/v sucrose) excipient concentration. The loss of viral titer in the sample cooled by melting propane was consistently the highest among those results from the alternative cooling methods. However, this loss could be minimized by lyophilization at lower temperature and higher vacuum conditions. We suggest that this is due to a higher ratio of ice recrystallization for the sample cooled by melting propane during warming to the temperature at which freeze-drying was carried out, as smaller ice crystals readily enlarge during warming. Under the same freezing condition, a higher viral titer recovery was obtained with a formulation containing a higher concentration of sugar excipients. The reason was thought to be twofold. First, sugars stabilize membranes and proteins by hydrogen bonding to the polar residues of the biomolecules, working as a water substitute. Second, the concentrated sugar solution lowers the nucleation temperature of the water inside the virus membrane and prevents large ice crystal formation within both the virus and the external medium.  相似文献   

8.
Immature, white zygotic embryos of Theobroma cacao L. (cacao) retained the ability to produce callus and to undergo somatic embryogenesis after slow hydrated freezing and desiccated fast freezing in liquid nitrogen. The highest rate of somatic embryogenesis occurred in embryos which were precultured on a medium containing 3% sucrose, frozen slowly with cryoprotectants before exposure to liquid nitrogen, and recovered on a medium containing 3 mg/liter NAA. Embryos precultured on media containing sucrose increasing to 21% had a higher rate of survival but were less embryogenic after freezing. These results suggest that immature embryos might be used for long-term germplasm storage of T. cacao germplasm.  相似文献   

9.
The object of this work was to study the effect of freezing down to--196 degrees C at different cooling and warming rates on the survival of T3, T4 and phiX174 phages. Phage particles survived when T3 phage was frozen at a rate of 20-400 degrees/min and phiX174 phage at a rate of 20-45 degrees/min. The survival rate of T4 phage was highest when it was frozen at a rate of 45 degrees/min. The survival of the phages depended also on the regime of warming. The susceptibility of the phages to freezing correlated with their sensitivity to osmotic shock in NaCl and sucrose solutions.  相似文献   

10.
The percentages of Babesia rodhaini parasites that survived different rates of cooling to −79 °C were determined by titrating infectivity in CBA mice before freezing and after thawing. The cryoprotective effect of DMSO and the effect of warming rate were also assessed.When parasitized blood containing 1.5 DMSO was cooled at nominal rates of 2.5 °, 265 °, and 2785 °C/min and warmed at 4320 °C/min, the respective survival rates were 0.075, 4.9, and 0.1%, indicating the existence of an optimal cooling rate. Blood without DMSO cooled and warmed under the same conditions was over 1000 times less infective. When parasitized blood containing DMSO was cooled at 2785 °C/min and warmed at 4320 °, 24.5 °, and 1.84 °C/ min, infectivity decreased progressively with the warming rate. The degrees of haemolysis in frozen and thawed blood indicated that cooling rate was more important than an intact host cell to survival of the parasite.The growth rate of B. rodhaini in CBA mice, estimated to be one binary fission in 8.5 hr, was not affected by the addition of DMSO followed by freezing and thawing.  相似文献   

11.
Freeze-fracture electron microscopy was used to study water content related freezing resistance in Grand Rapids lettuce seeds. Consistent and recognizable conformational changes occurred in lipid-water phases of lettuce seeds at different moisture contents. In air-dry lettuce seed cotyledons, the lipids lying in spherical lipid bodies near the cell wall appeared amorphous, while the structure was crystalline above 20% water content. The lipid bodies interassociated into membrane bilayers in seeds containing 20 to 25% water. Such lyotropic phase transitions in membrane lipids during lettuce seed hydration are believed to contribute to the biphasic freezing behavior observed in lettuce seeds at different moisture contents and to provide a natural freezing tolerance mechanism for highly desiccated plant tissues such as seeds.  相似文献   

12.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

13.
Embryogenic tissue of the sweet potato (Ipomoea batatas (L) LAM) genotype TIB 10 was established from in vitro axillary shoot tips on Murashige and Skoog (1962) medium supplemented with 5 M 2,4-dichlorophenoxyacetic acid. Embryogenic aggregates of fresh mass 9.0–12 mg were subjected to a rapid freezing protocol in liquid nitrogen following sucrose preculture and varying degrees of dehydration. Up to 50% of embryogenic explants survived rapid freezing after preculture on 0.4 or 0.7M sucrose only. Dehydration with silica gel to moisture contents in the range 18–41% improved the survival after cryopreservation of embryogenic tissue. Tissue dehydrated for intermediate periods exhibited poor survival. Following freezing, embryogenic tissue appeared to develop normally, retaining its competence to produce mature embryos and plantlets.Abbreviations BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) medium  相似文献   

14.
Lin  T; Yen  W; Chien  C 《Journal of experimental botany》1998,49(324):1203-1212
The relationship between sugar content and loss of desiccation tolerance of hydrated crop seeds (tomato, okra, snow pea, mung bean, and cucumber) was evaluated by imbibing seeds with or without ABA, followed by dehydration and germination. During the process of hydration, but before the seeds lost desiccation tolerance, monosaccharide content increased only slightly, sucrose increased in snow peas, mung bean and cucumber, but maintained its original level in other species and the oligosaccharides declined dramatically. At the time of losing desiccation tolerance, the sucrose content of imbibed seeds was 2-3 times higher than the original level in most species. Positive significant correlation coefficients (r) were found in many, but not all crop seeds between desiccation tolerance and the oligosaccharide mass, or oligo/sucrose ratio. The ratio of oligo/sucrose in intact seeds at the time of losing desiccation tolerance, however, was not a fixed value and varied among species. Oligosaccharides declined significantly in different seed parts of imbibed cucumber seeds while sucrose increased to a higher level in the radicle than in the hypocotyl. Radicles were far more sensitive to desiccation than hypocotyls. The same observation was found for cucumber seeds imbibed in 100 M ABA, yet desiccation tolerance was largely maintained in hypocotyls and cotyledons. It is concluded that sucrose and oligosaccharides are not the determinants of the loss of desiccation tolerance in hydrated seeds.Imbibed seeds did not show any differences between seed parts in their ability to resynthesize sugars during the process of slow dehydration. Differences in sensitivity to desiccation among seed parts were not due to differences in the initial water content or to the rate of water content increase among seed parts. Physiological regulation of the loss of desiccation tolerance in crop seeds during hydration is discussed.  相似文献   

15.
Storage of brewing yeasts by liquid nitrogen refrigeration   总被引:1,自引:0,他引:1       下载免费PDF全文
Many yeast strains are difficult to maintain in culture in a stable state, and long-term preservation by lyophilization, which has proved useful for other fungi, has given poor results with brewing yeasts. As an alternative to continuous subculture, which maximizes strain variability, various methods of cryogenic storage were investigated. Yeast strains were frozen with or without cryoprotectants (such as glycerol or inositol) and stored at -196 C. Recovery after warming was estimated from plate counts, and survivors were screened to detect changes in the frequency of morphological types, respiratory-deficient mutants, and glycerol-sensitive mutants. Strains varied in their sensitivity to freezing, and survival was modified by the growth medium, the freezing munstrua, and the freezing conditions. Suspension of cells in 10% (vol/vol) glycerol, cooled at 1 C/min, warmed rapidly and plated on malt-yeast extract-glucose-peptone agar produced the highest percentage of viable colonies with a minimal change in metabolic characteristics. In two of the strains tested, no significant increase in mutation rate was detected under any of the treatments; the strains were maintained in a stable state and were metabolically comparable to unfrozen strains. In one strain of Saccharomyces uvarum after some freezing treatments, the percentage of respiratory-deficient mutants increased markedly, the fermentation rate declined, and a loss of flocculation occurred. The freezing parameters which increased the level of respiratory-deficient cells should be avoided in maintaining this strain. Maintenance of cultures of brewing yeasts by cryogenic storage has several advantages over other preservation techniques: the method is simple and reproducible, the cultures have remained stable over a 3-year test period, and the viability is high.  相似文献   

16.
Yoon Y  Pope J  Wolfe J 《Cryobiology》2003,46(3):271-276
The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.  相似文献   

17.
Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08–1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60–95% was recorded for embryos exposed to 0.5–1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H2O g−1dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.  相似文献   

18.
AIM: To investigate the influence of low cooling rates on endothelial function and morphology of corneas frozen with propane-1,2-diol (PROH). METHODS: Rabbit corneas, mounted on support rings, were exposed to 1.4mol/l (10% v/v) PROH, seeded to initiate freezing, and cooled at 0.2 or 1 degrees C/min to -80 degrees C. Corneas were frozen immersed in liquid or suspended in air. After being held overnight in liquid nitrogen, corneas were warmed at 1 or 20 degrees C/min. After stepwise removal of the cryoprotectant, the ability of the endothelium actively to control corneal hydration was monitored during normothermic perfusion. Morphology was assessed after staining with trypan blue and alizarin red S, and by specular microscopy during perfusion. RESULTS: Functional survival was achieved only after slow cooling (0.2 degrees C/min) with the cornea immersed in the cryoprotectant medium, and rapid warming (20 degrees C/min). These conditions also gave the best morphology after freezing and thawing. CONCLUSION: Cooling rates lower than those typically applied to cornea improved functional survival of the endothelium. This result is in accord with previous observations showing the benefit of low cooling rates for cell monolayers [CryoLetters 17 (1996) 213-218].  相似文献   

19.
Colletotrichum truncatum conidia produced from a one week-old culture in a liquid semi-defined medium with a C:N ratio of 5:1 were more tolerant of desiccation than those harvested from two or three week-old cultures. Conidia washed with 20% (w/v) sucrose germinated better than unwashed conidia or those washed in 10% (w/v) sucrose, 10 and 20% (w/v) glucose or fructose, 0.1% (w/v) soluble starch, 0.9% (w/v) NaCl or deionized water. Washing with sucrose (20% w/v) also resulted in significantly longer germ tubes than those produced by unwashed conidia or conidia washed with deionized water or NaCl (0.9% w/v). Conidia washed twice in sucrose showed greater desiccation tolerance during storage at 15% relative humidity (RH) and 15°C than at 30% RH and 15 or 25°C or at 15% RH and 25, 5 or -10°C.  相似文献   

20.
Although embryo cryopreservation has become commonplace in many species, effective methods are not available for routine freezing of unfertilized eggs. Cryopreservation-induced damage may be caused by the high concentration of sodium ions in conventional freezing media. This study investigates the effect of a newly developed low-sodium choline-based medium (CJ2) on the ability of unfertilized, metaphase II mouse eggs to survive cryopreservation and develop to the blastocyst stagein vitro.Specifically, the effects of cooling to subzero temperatures, thawing rate, LN2plunge temperature, and equilibration with a low-sodium medium prior to freezing are examined. In contrast to cooling to 23, 0, or −7.0°C in a sodium-based freezing medium (ETFM), cooling in CJ2 had no significant negative effect on oocyte survival or development. Oocytes frozen in CJ2 survived plunging into LN2from −10, −20, or −33°C at significantly higher rates than oocytes frozen in ETFM. With the protocol used (1.5 M PrOH, 0.1 M sucrose, −0.3 C/min, plunging at −33°C) rapid thawing by direct submersion in 30°C water was more detrimental to oocyte survival than holding in air for 30 or 120 s prior to transfer to water. Equilibration of unfertilized oocytes with a low-sodium medium prior to cryopreservation in CJ2 significantly increased survival and blastocyst development. These results demonstrate that the high concentration of sodium in conventional freezing media is detrimental to oocyte cryopreservation and show that choline is a promising replacement. Reducing the sodium content of the freezing medium to a very low level or eliminating sodium altogether may allow oocytes and other cells to be frozen more effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号