首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA deoxyribophosphodiesterase (dRpase) of E. coli catalyzes the release of deoxyribose-phosphate moieties following the cleavage of DNA at an apurinic/apyrimidinic (AP) site by either an AP endonuclease or AP lyase. Exonuclease I is a single-strand specific DNA nuclease which affects the expression of recombination and repair pathways in E. coli. We show here that a major dRpase activity in E. coli is associated with the exonuclease I protein. Highly purified exonuclease I isolated from an over-producing stain contains high levels of dRpase activity; it catalyzes the release of deoxyribose-5-phosphate from an AP site incised with endonuclease IV of E. coli and the release of 4-hydroxy-2-pentenal-5-phosphate from an AP site incised by the AP lyase activity of endonuclease III of E. coli. A strain containing a deletion of the sbcB gene showed little dRpase activity; the activity could be restored by transformation of the strain with a plasmid containing the sbcB gene. The dRpase activity isolated from an overproducing stain was increased 70-fold as compared to a normal sbcB+ strain (AB3027). These results suggest that the dRpase activity may be important in pathways for both DNA repair and recombination.  相似文献   

2.
It has been shown previously that the DNA deoxyribophosphodiesterase (dRpase) activity of Escherichia coli excises 2-deoxyribose 5-phosphate moieties at apurinic/apyrimidinic (AP) sites in DNA following cleavage of the DNA at the AP site by an AP endonuclease such as endonuclease IV of E coli. A second class of enzymes that cleave DNA at AP sites by a beta-elimination mechanism, AP lyases, leave a different sugar-phosphate product remaining at the AP site, which has been identified as the compound trans-4-hydroxy-2-pentenal 5-phosphate. It is shown that dRpase removes this unsaturated sugar-phosphate group following cleavage of a poly(dA-dT) substrate containing AP sites by the action of the AP lyase endonuclease III of E. coli. The Km for the removal of trans-4-hydroxy-2-pentenal 5-phosphate is 0.06 microM; the Km for the removal of 2-deoxyribose 5-phosphate is 0.17 microM. It was verified that the sugar-phosphate product removed by dRpase from the endonuclease III-cleaved substrate was trans-4-hydroxy-2-pentenal 5-phosphate by conversion of the product to the compound cyclopentane-1,2-dione. The dRpase activity is unique in its ability to remove sugar-phosphate products after cleavage by both AP endonucleases and AP lyases.  相似文献   

3.
C Urbanke  A Schaper 《Biochemistry》1990,29(7):1744-1749
The time course of the reaction of Escherichia coli single-stranded DNA binding protein (E. coli SSB) with poly(dT) and M13mp8 single-stranded DNA has been measured by fluorescence stopped-flow experiments. For poly(dT), the fluorescence traces follow simple bimolecular behavior up to 80% saturation of the polymer with E. coli SSB. A mechanistic explanation of this binding behavior can be given as follows: (1) E. coli SSB is able to translocate very rapidly on the polymer, forming cooperative clusters. (2) In the rate-limiting step of the association reaction, E. coli SSB is bound to the polymer only by one or two of its four contact sites. As compared to poly(dT), association to single-stranded M13mp8 phage DNA is slower by at least 2 orders of magnitude. We attribute this finding to the presence of secondary structure elements (double-stranded structures) in the natural single-stranded DNA. These structures cannot be broken by E. coli SSB in a fast reaction. In order to fulfill its physiological function in reasonable time, E. coli SSB must bind newly formed single-stranded DNA immediately. The protein can, however, bind to such pieces of the newly formed single-stranded DNA which are too short to cover all four binding sites of the E. coli SSB tetramer.  相似文献   

4.
Excision of deoxyribose-phosphate residues from enzymatically incised abasic sites in double-stranded DNA is required prior to gap-filling and ligation during DNA base excision-repair, and a candidate deoxyribophosphodiesterase (dRpase) activity has been identified in E. coli. This activity is shown here to be a function of the E. coli RecJ protein, previously described as a 5'-->3' single-strand specific DNA exonuclease involved in a recombination pathway and in mismatch repair. Highly purified preparations of dRpase contained 5'-->3' exonuclease activity for single-stranded DNA, and homogeneous RecJ protein purified from an overproducer strain had both 5'-->3' exonuclease and dRpase activity. Moreover, E. coli recJ strains were deficient in dRpase activity. The hydrolytic dRpase function of the RecJ protein requires Mg2+; in contrast, the activity of E. coli Fpg protein, that promotes the liberation of 5'-->3'Rp residues from DNA by beta-elimination, is suppressed by Mg2+. Several other E. coli nucleases, including exonucleases I, III, V, and VII, endonucleases I, III and IV and the 5'-->3' exonuclease function of DNA polymerase I, are unable to act as a dRpase. Nevertheless, E. coli fpg recJ double mutants retain capacity to repair abasic sites in DNA, indicating the presence of a back-up excision function.  相似文献   

5.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

6.
The 3'-5' single-stranded DNA(ssDNA) degrading exonuclease I of E. coli directly interacts with the E. coli ssDNA binding protein (EcoSSB). Analytical ultracentrifugation shows that all 4 carboxy-termini of an EcoSSB tetramer bind exonuclease I. Binding is weakened by increasing salt concentrations, indicating the involvement of the negatively charged amino acids of the carboxy-terminus of SSB. Mutant SSB proteins EcoSSBP176S (ssb-113) and EcoSSBF177C do not bindtoexonuclease I while EcoSSBG15D (ssb-3) does bind. In a co-precipitation assay we show that the absence of the lastten amino acids (PMDFDDDIPF) completely abolishes binding of EcoSSB to exonuclease I. The interaction does not depend on the presence of the correct amino-terminal DNA binding domain or the amino acid sequences between the DNA binding domain and the last ten amino acids. A synthetic peptide (WMDFDDDIPF), corresponding to the last nine amino acids of EcoSSB, specifically inhibits the interaction. Both EcoSSBP176S and EcoSSBF177C SSBs bind DNA similar to wild-type EcoSSB, indicating that the phenotype of ssb-113 is not an indication of altered DNA binding. The repair deficiency of either ssb-3 or ssb-113 strain can be complemented by overexpression of the respective other mutant.  相似文献   

7.
Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.  相似文献   

8.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

9.
The effect of Escherichia coli single-stranded DNA binding protein (SSB) on DNA synthesis by T7 DNA polymerase and E. coli DNA polymerase I (large fragment) using native or aminofluorene-modified M13 templates was evaluated by in vitro DNA synthesis assays and polyacrylamide gel electrophoresis analysis. The two polymerase enzymes displayed differential responses to the addition of SSB. T7 DNA polymerase, a enzyme required for the replication of the T7 chromosome, was stimulated by the addition of SSB whether native or modified templates were used. On the other hand, E. coli DNA polymerase I was slightly stimulated by the addition of SSB to the native template but substantially inhibited on modified templates. This result suggests that DNA polymerase I may be able to synthesize past an aminofluorene adduct but that the presence of SSB inhibited this trans-lesion synthesis. Polyacrylamide gels of the products of DNA synthesis by polymerase I supported this inference since SSB caused a substantial increase in the accumulation of shorter DNA chains induced by blockage at the aminofluorene adduct sites.  相似文献   

10.
The Caenorhabditis elegans genes, exo-3 and apn-1, encode the proteins EXO-3 and APN-1, belonging to the exo III and endo IV families of apurinic/apyrimidinic (AP) endonucleases/3'-diesterases, respectively. Homologues of EXO-3 and APN-1 in E. coli and yeast have been clearly documented to repair AP sites and DNA strand breaks with blocked 3' ends to prevent genomic instability. Herein, we purified the C. elegans EXO-3, expressed as a Gst-fusion protein in yeast, and demonstrated that it possesses strong AP endonuclease and 3'-diesterase activities. However, unlike the E. coli counterpart exonuclease III, EXO-3 shows no significant level of 3' --> 5' exonuclease activity following incision at AP sites. In addition, EXO-3 lacks the ability to directly incise DNA at the 5' side of various oxidatively damaged bases, as observed for the human counterpart Ape1, suggesting that C. elegans evolved a member with tailored functions. Importantly, a variant form of EXO-3, E68A, demonstrates altered magnesium-binding properties, and although the in vitro AP endonuclease is nearly fully recovered in the presence of MgCl2, the 3'-diesterase activity is reduced when compared to the native enzyme. We suggest that Glu68 plays a role in coordinating Mg2+ binding for the enzyme catalytic mechanism. Further analysis reveals that neither purified Gst-EXO-3 nor the E68A variant forms a readily detectable DNA-protein complex with an oligonucleotide substrate containing either an AP site or an alpha,beta-unsaturated aldehyde at its 3' end. However, if the reaction is conducted in the presence of crude extracts derived from either yeast or C. elegans embryos, only E68A forms a distinct slow migrating DNA-protein complex with each of the substrates, suggesting that Glu68 may be required to facilitate the release of EXO-3 from the incised DNA to allow entry of the remaining components of the base-excision repair pathway. Thus, the slow migrating DNA-protein complex formed by the E68A variant could be indicative of a stalled repair process with associated factor(s).  相似文献   

11.
A comparison of the 3'----5' proofreading properties between Escherichia coli DNA polymerase III holoenzyme and DNA polymerase III' was conducted. This study indicated that the influence of the holoenzyme auxiliary subunits on the proofreading exonuclease parallels their effect on the elongation reaction. At physiological ionic strengths the auxiliary subunits markedly stimulated the exonuclease rate in an ATP-dependent reaction, while the exonuclease rate of DNA polymerase III' was not affected by ATP. E. coli single-stranded DNA binding protein stimulated the 3'----5' exonuclease activity of holoenzyme and inhibited DNA polymerase III'. Similarly, the auxiliary subunits and ATP converted the proofreading activity to a highly processive exonuclease. Our observation, that the exonuclease activity of the DNA polymerase III holoenzyme responded to ATP, salt, and E. coli single-stranded DNA-binding protein like the elongation activity, is consistent with the polymerase and exonuclease subunits acting within the same complex in a coordinated reaction.  相似文献   

12.
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.  相似文献   

13.
We have purified three chromatographically distinct human enzyme activities from HeLa cells, that are capable of converting bleomycin-treated DNA into a substrate for E. coli DNA polymerase I. The bleomycin-treated DNA substrate used in this study has been characterized via a 32P-postlabeling assay and shown to contain strand breaks with 3'-phosphoglycolate termini as greater than 95% of the detectable dose-dependent lesions. The purified HeLa cell enzymes were shown to be capable of removing 3'-phosphoglycolates from this substrate. Also 3'-phosphoglycolate removal and nucleotide incorporation were enzyme dependent. In addition, all three Hela cell enzymes have been determined to possess Class II AP endonuclease activity. The enzymes lack 3'----5' exonuclease activity and are, therefore, dissimilar to exonuclease III--an E. coli enzyme that can remove 3'-phosphoglycolate.  相似文献   

14.
Electron microscopy was used to characterize the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase I. Linear DNA with 5'-protruding strands as well as single-stranded gaps was incubated, under unwinding assay conditions, with the helicase. E. coli single-stranded-DNA-binding protein (SSB) was added to order the denatured DNA. Up to 70% of the sites of SSB-complexed DNA were observed as forks. The position of the strand-separating enzyme was indicated by a gap in the complex between fork and SSB on that arm which initially provided the binding site. The complex between DNA and helicase varied in length although in all cases it was long enough to comprise several helicase I molecules. A mutant helicase I (helicase I del29) which, unlike the wild-type enzyme, fails to show cooperative DNA-binding behaviour was found to prevent an abnormally short stretch of DNA near the fork from binding SSB. Apparently, one or very few helicase molecules would be sufficient for the opening of a DNA duplex although, typically, the fork is shifted by a tract of helicase I molecules. SSB displaces helicase I from single-stranded DNA but fails to do so from a fork or a single-strand/double-strand junction. The difference is consistent with the observation that SSB does not inhibit the unwinding reaction despite its rapid association with the separated strands. Helicase I unwinds in the 5'-3' direction of the bound strand. Observations so far indicate that the enzyme exploits the single strand at the initial DNA-binding site for orienting its action, and not the complementary, completely base-paired strand.  相似文献   

15.
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function.  相似文献   

16.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

17.
RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).  相似文献   

18.
Processivity of DNA exonucleases.   总被引:5,自引:0,他引:5  
A homopolymer system has been developed to examine the digestion strategies of DNA exonucleases. Escherichia coli exonuclease I and lambda-exonuclease, are processive enzymes. However, T7 exonuclease, spleen exonuclease, E. coli exonuclease III, the 3' leads to 5'-exonuclease of T4 DNA polymerase, and both the 3' leads to 5' and the 5' leads to 3' activity of E. coli DNA polymerase I dissociate frequently from the substrate during the course of digestion. Regions of duplex DNA are a dissociation signal for exonuclease I.  相似文献   

19.
The yeast OGG1 gene was recently cloned and shown to encode a protein that possesses N-glycosylase/AP lyase activities for the repair of oxidatively damaged DNA at sites of 7,8-dihydro-8-oxoguanine (8-oxoguanine). Similar activities have been identified for Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and Drosophila ribosomal protein S3. Both Fpg and S3 also contain a deoxyribophosphodiesterase (dRpase) activity that removes 2-deoxyribose-5-phosphate at an incised 5' apurinic/apyrimidinic (AP) sites via a beta-elimination reaction. Drosophila S3 also has an additional activity that removes trans-4-hydroxy-2-pentenal-5-phosphate at a 3' incised AP site by a Mg2+-dependent hydrolytic mechanism. In view of the substrate similarities between Ogg1, Fpg and S3 at the level of base excision repair, we examined whether Ogg1 also contains dRpase activities. A glutathione S-transferase fusion protein of Ogg1 was purified and subsequently found to efficiently remove sugar-phosphate residues at incised 5' AP sites. Activity was also detected for the Mg2+-dependent removal of trans -4-hydroxy-2-pentenal-5-phosphate at 3' incised AP sites and from intact AP sites. Previous studies have shown that DNA repair proteins that possess AP lyase activity leave an inefficient DNA terminus for subsequent DNA synthesis steps associated with base excision repair. However, the results presented here suggest that in the presence of MgCl2, Ogg1 can efficiently process 8-oxoguanine so as to leave a one nucleotide gap that can be readily filled in by a DNA polymerase, and importantly, does not therefore require additional enzymes to process trans -4-hydroxy-2-pentenal-5-phosphate left at a 3' terminus created by a beta-elimination catalyst.  相似文献   

20.
A Price 《FEBS letters》1992,300(1):101-104
The 5'----3' exonuclease activity of E. coli DNA polymerase I and a related enzyme activity in mammalian cell nuclei, DNase IV, are unable to catalyse the excision of free deoxyribose-phosphate from apurinic/apyrimidinic (AP) sites incised by an AP endonuclease. Instead, the sugar phosphate residue is slowly released as part of a short oligonucleotide. These products have been characterised as dimers and trimers by comparison of their retention time on reverse-phase HPLC with reference compounds prepared by acid depurination of a dinucleotide, trinucleotide and tetranucleotide containing a 5'-terminal dAMP residue. The similar mode of action of these enzymes at 5'-incised AP sites provides an explanation for the minority of repair patches larger than one nucleotide observed when AP sites are repaired by E. coli and mammalian cell extracts in vitro and strengthens the functional analogy between the two activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号