首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
This study determines the inhibitory effect of Stevia rebaudiana leaf extracts and its purified bioactive compound ‘stevioside’ against food‐related pathogens. The S. rebaudiana solvent extracts (1000 μg/mL) displayed antibacterial activity to Serratia marcescens, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, B. subtilis, Alcaligenes denitrificans and Salmonella typhimurium. Of the six solvents, ethanol and acetone extracts displayed the highest zone of inhibition. The bioactive compound from S. rebaudiana was purified by solvent extraction, thin‐layer chromatography followed by structural characterization by spectroscopy evidence. Purified stevioside prevented the growth of tested bacterial species, i.e. B. subtilis, K. pneumoniae and S. typhimurium. Significant zone of inhibition (12 mm) was observed against B. cereus which proposes potential application of stevioside in foods to increase their shelf life.  相似文献   

2.
About 377 guar (Cyamopsis tetragonoloba) rhizobacteria were isolated from cultivated soils of north-west India (Thar Desert) and their antifungal activity against Macrophomina phaseolina (strains of groundnut, mungbean and guar) and Fusarium oxysporum (strains of chickpea and cumin) was examined. Isolates were characterised for generic types and physiological/functional diversity. About 19% isolates representing 24% locations were inhibitory to fungal growth. Isolates 009071, 009073, 009078 and 102354 recorded maximum inhibition of pathogenic fungi on plates. Isolate 034206 gave highest %RI, 009073 showed maximum protease activity and 102354 gave highest salt tolerance. Net house and field screening results revealed that isolates 004052, 009071, 009073, 001001, 094340 and 102354 had potential for biocontrol of disease. Partial sequencing of 16S rRNA gene of 61 isolates showed that 85% of isolates belonged to genus Bacillus. Phylogenetically, however, there were four clusters in the Bacillus group comprising of Bacillus subtilis, B. cereus, B. pumilus and B. sphaericus. One isolate was identified as B. flexus, while six isolates were Bacillus spp. Four isolates were identified as Achromobacter xylosoxidans, two as Bacterium (unclassified bacteria), and one each as Ochrobactrum intermedium, Pseudomonas aeruginosa and Ralstonia sp.  相似文献   

3.

Hypersaline ecosystems offer unique habitats to microbial populations capable of withstanding extreme stress conditions and producing novel metabolites of commercial importance. Herein, we have characterized for the first time the production of bioactive pigments from newly isolated halophilic bacterial species. Halophilic bacteria were isolated from Khewra Salt Range of Pakistan. Three distinctly colored isolates were selected for pigment production. Selected colonies were identified as Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 based on morphological, biochemical, and physiological evidences as well as 16S rRNA analysis. The optimum pigment production observed at mesophilic condition, nearly neutral pH, and moderate salinity was validated using response surface methodology. Different analytical techniques (UV spectroscopy, infrared spectroscopy, and HPLC) characterized these purified pigments as derivatives of bacterioruberin carotenoids. Antioxidant activity of pigments revealed up to 85% free-radical scavenging activity at the concentration of 30 µg ml−1. Pigments also showed significant antimicrobial activity against Bacillus subtilis, Bacillus pumilus, Enterococcus faecalis, Bacillus cereus, Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas geniculata, Enterococcus faecium, Aspergillus fumigatus, Aspergillus flavus, Fusarium solani, and Mucor spp., suggesting potential biomedical applications.

  相似文献   

4.
In vitro effects on bacterial growth of phenoloxidase reaction products   总被引:3,自引:0,他引:3  
An active phenoloxidase preparation from the freshwater crayfish Pacifastacus leniusculus exhibited a strong antibacterial effect in vitro on the bacteria Aeromonas hydrophila, Escherichia coli, Streptococcus pneumoniae whereas a weaker but still significant effect against Bacillus cereus, Pseudomonas aeruginosa and Staphylococcus aureus. In most cases reduction of bacterial growth was stronger when dopamine was used as substrate as compared to L-dopa. The effect on bacteria was abolished if no substrate was available for the phenoloxidase or in the presence of the phenoloxidase inhibitor phenylthiourea.  相似文献   

5.
Accumulation of petroleum hydrocarbon residual considered a major environmental problem in the kingdom of Saudi Arabia cause of intensive efforts for oil detecting. Until now, In situ biodegradation considered the most effective method for petroleum hydrocarbon residual biodegradation. The aim of this study is isolation and identification biodegradable capability bacteria from contaminated sites in Khurais oil field, Dhahran, Saud Arabia via Different morphological and biochemical and molecular methods. Furthermore, degradation level in contaminated liquid medium and soil were evaluated. Three bacterial strains were selected from petroleum-contaminated soils of Khurais oil field depending on their capacity to grow in the existence of hydrocarbon components and identified according to morphological, biochemical. Interestingly, 16S rDNA sequencing fingerprinting results confirmed our bacterial identification as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereu. Phyllogenetic tree was constructed and genetic similarity was calculated according to alignments results. Biodegradation patterns for different three isolates were reflected varied degradation ability for three isolates regarding incubation time. Different features were studied for three biodegrading bacterial strains and identified as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereus. Remarkable degradation rate % patterns for hydrocarbons residual were recorded for all three isolates with varied.  相似文献   

6.
A series of new antibacterial and antifungal Schiff's bases derived from sulfonamides, as well as their transition metal complexes incorporating cobalt (II), copper (II), nickel (II) and zinc (II) were synthesized, characterized and screened for their in-vitro antibacterial activity against six Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Shigella dysentriae) and four Gram-positive (Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureous and Streptococcus pyogenes) bacterial strains and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed Schiffs' bases. The brine shrimp bioassay was also carried out to study the in-vitro cytotoxic properties of these synthesized ligands and their complexes.  相似文献   

7.
8.
Biodegradation of Chlorpyrifos in Soil by Enriched Cultures   总被引:3,自引:0,他引:3  
Three aerobic bacterial consortia, AC, BC, and DC, developed from pesticide-contaminated soils of Punjab were able to degrade chlorpyrifos after 21 days of incubation in basal medium by 54, 46, and 61% and chlorpyrifos (50 mg/L) in soil after 30 days by 50, 56, and 64%. Pseudomonas aeruginosa, Bacillus cereus, Klebsiella sp., and Serratia marscecens obtained from these consortia showed 84, 84, 81, and 80% degradation of chlorpyrifos (50 mg/L) in liquid medium after 20 days and 92, 60, 56, and 37% degradation of chlorpyrifos (50 mg/L) in soil after 30 days. Populations of Bacillus cereus, Klebsiella sp., and Serratia marscecens remained steady in soil experiments except for P. aeruginosa, where the population showed a substantial increase. Formation of 3,5,6-trichloro-2-pyridinol, the major metabolite of chlorpyrifos degradation, was observed during the degradation of chlorpyrifos by P. aeruginosa, which disappeared to negligible amounts.  相似文献   

9.
The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.  相似文献   

10.
The occurrence of extended-spectrum-β-lactamase (ESBL)-producing strains in the community was investigated in a private laboratory located in Juiz de Fora, Brazil. All enterobacterial isolates analysed were collected from urine of human patients between the years 2000 and 2002. ESBL production was confirmed by double disk screening, combination disk method, and Etest ESBL strip. The isoelectric point of each β-lactamase was determined in the crude extracts from each isolate. Detection of ESBL genes was performed by polymerase chain reaction and the genetic relatedness of the isolates determined by pulsed-field gel electrophoresis (PFGE). Of the 1,481 isolates, 22 (12 Klebsiella pneumoniae, 7 Escherichia coli, 1 Providencia stuartii, 1 Citrobacter freundii, and 1 Serratia marcescens) were identified as ESBL producers. The frequency of ESBL producers in the community was 1.48%. TEM-type enzymes were identified in 95.4% of the isolates, followed by the SHV type. Seven strains produced CTX-M–type enzymes. This study showed that strains producing multiple β-lactamases are also present in community-acquired bacterial isolates. Multiple strains exhibiting identical PFGE genotypes were found in individual patients indicating a common source of acquisition.  相似文献   

11.
Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.  相似文献   

12.
Aims: The current international standard method for detection of Enterobacter sakazakii from milk products is by the International Organization for Standardization and the International Dairy Federation documented method, a procedure involving two-step enrichment. This study aimed to assess enrichment of E. sakazakii using a one-step enrichment. Methods and Results: Enrichment of four strains of E. sakazakii was compared using five different media, with stressed or unstressed cells, and at three levels of competing microflora, which were included to assess their effects on the positive isolation of E. sakazakii. Enrichment of milk powders, prepared by spray-drying milk seeded with E. sakazakii, was assessed using one-step enrichment for detection of E. sakazakii, followed by confirmation of positive isolates by real-time PCR. Conclusions: Current media are unsuitable for enrichment and detection of all E. sakazakii isolates, in particular, when high levels of background microflora are present in the sample matrix, and new defined media are needed for successful one-step enrichment. Significance and Impact of the Study: These findings provide further analysis of one-step enrichment processes for E. sakazakii in the presence of competing microflora, and show that further formulation is needed for a universal E. sakazakii enrichment medium, with careful selection of both nutrients and selective agents.  相似文献   

13.
Despite the constantly increasing need for new antimicrobial agents, antibiotic drug discovery and development seem to have greatly decelerated in recent years. Presented with the significant problem of advancing antimicrobial resistance, the global scientific community has attempted to find alternative solutions; one of the most promising ones is the evaluation and use of old antibiotic compounds. A number of old antibiotic compounds, such as aminoglycosides, chloramphenicol, and tetracycline, are re-emerging as valuable alternatives for the treatment of difficult-to-treat infections. This study examined the in vitro potency for biofilm formation of five isolates (Klebsiella sp., Pseudomonas aeruginosa, Achromobacter sp., Klebsiella pneumoniae, and Bacillus pumilis) and the effects of antibiotics on these biofilms. Furthermore the quantitative analysis of planktonic, loosely attached cells, and their susceptibility to antibiotics was also determined. Twitching motility was observed to determine any effect in the biofilm forming capability of the isolates. All the isolates tested were efficient biofilm-forming strains in the polypropylene and borosilicate test tubes. Standard bacterial enumeration technique and CV staining produced equivalent results both in biofilm and planktonic assays. The biofilm formation of all the strains was affected in the presence of tetracycline or chloramphenicol. Highly significant decrease (P < 0.01) in biofilm formation was observed by treatment with chloramphenicol compared to tetracycline. In addition, the two antibiotics also affected adversely the planktonic and loosely attached cells of all isolates. Thus, testing the effects of older antibiotics on biofilms may supply useful information in addition to standard in vitro testing, particularly in diseases where biofilm formation is involved in the pathogenesis.  相似文献   

14.
Summary Growth ofSalmonella typhimurium, Staphylococcus aureus, Bacillus cereus andPseudomonas aeruginosa was inhibited when the pH of fermenting tef approached 5.0, 5.0, 5.5 and 5.0, respectively. However the test organisms grew in far more acidic conditions in broth than in fermenting tef and this is due to antimicrobial substance(s) being produced by some of the lactic acid bacteria. Except forBacillus cereus spores, all the test organisms were heat-inactivated during the baking process of the final tef injera.
Effet de la fermentation sur la croissance et la survie de Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus et Pseudomonas aeruginosa dans le tef (Eragrostis tef) en fermentation
Résumé La croissance deSalmonella typhimurium, deStaphylococcus aureus, deBacillus cereus et dePseudomonas aeruginosa est inhibée lorsque les pH du tef en fermentation approchent respectivement 5:0, 5.0, 5.5 et 5.0. Toutefois, les organismes tests croissent dans des conditiones bien plus acides que dans le tef en fermentation. Ceci est dû à des substances antimicrobiennes produites par certaines bactéries lactiques. A l'exception des spores deBacillus cereus, tous les organismes tests sont inactivés par la chaleur durant le processus de cuisson.
  相似文献   

15.
Lee C  Kim J  Chang J  Hwang S 《Biodegradation》2003,14(3):183-188
A mixed bacterial culture capable of growing in potassium-thiocyanatecontaining medium (200 mg KSCN) has been isolated from bacterial suspensions of soilsamples collected near gold mines in Kumjung (Korea). The isolates were initially characterized by metabolic profile analysis and were identified as Bacillus thermoglucosidasius,Bacillus cereus, Bacillus licheniformis, Bacillus mycoides, Brevibacteriumepidermidis, Brevibacterium otitidis, and Corynebacterium nitrilophilus.One of the seven isolates was initially characterized as Brevibacterium epidermidis,which is not known to degrade thiocyanate. However, using 16S rDNA sequencing, thisstrain was identified as a member of Klebsiella. The strain shows high similarityvalues (95.8 to 96.4%) with Klebsiella species, and the closest known relative was foundto be K. ornithinolytica ATCC 31898. The result indicates that species of the genusKlebsiella were the closest phylogenetic relatives of the investigated strain. This isthe first known report of a member of Klebsiella that is capable of utilizing thiocyanate assole source of carbon and nitrogen.  相似文献   

16.
The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.  相似文献   

17.
The study of the microbial ecology in extreme acidic environments has provided an important foundation for the development of mineral biotechnology. The present investigation reports the isolation, identification and molecular characterization of indigenous manganese (Mn) solubilizing acidophilic bacterial strains from mine water samples from Odisha, India. Four morphologically distinct bacterial strains showing visible growth on Mn-supplemented plates of varying pH were isolated and identified. Mn solubilizing ability of the isolates was tested by growing them on Mn-supplemented agar plates. The appearance of lightening around the growing colonies of all the isolates demonstrated their Mn solubilizing ability in the medium. 16 S rRNA sequencing was carried out and the bacterial isolates were taxonomically classified as Enterobacter sp. AMSB1, Bacillus cereus AMSB3, Bacillus nealsonii AMSB4 and Staphylococcus hominis AMSB5. The evolutionary timeline was studied by constructing neighbor-joining phylogenetic trees. The ability of acidophilic microorganisms to solubilize heavy metals is supported by five basic mechanisms which include: enzymatic conversion, metal effluxing, reduction in sensitivity of cellular targets, intra- or extracellular sequestration, and permeability barrier exclusion. Such ecological studies undoubtedly will provide insights into Mn biogeochemical processes occurring in leaching environments. The application of acidophilic microbiology in mineral biorecovery and beneficiation has a large future potential.  相似文献   

18.
Two hundred and nineteen bacterial strains were isolated from cow dung. Among these, 59 isolates displayed nematicidal activity against the model nematode Caenorhabditis elegans. Of the 59 bacterial strains, 17 killed >90 % of the tested nematodes within 1 h. Based on their 16S rRNA sequences, these 17 strains were identified as Alcaligenes faecalis, Bacillus cereus, Proteus penneri, Providencia rettgeri, Pseudomonas aeruginosa, Pseudomonas otitidis, Staphylococcus sciuri, Staphylococcus xylosus, Microbacterium aerolatum, Pseudomonas beteli. Among these 17 strains, 14 produced volatile organic compound(s) that inhibited the mobility of the C. elegans nematodes. These 14 strains also showed nematicidal activity against a plant pathogenic nematode Meloidogyne incognita. This is the first report demonstrating nematicidal activity for strains in genera Proteus, Providencia and Staphylococcus.  相似文献   

19.
Cronobacter spp. (formerly Enterobacter sakazakii) are emerging, opportunistic pathogens that are linked with food-borne infections in neonates and infants. In the present study, 291 samples of food, 36 samples from a dairy farm and 140 samples of dust from vacuum cleaners were examined for the presence of Cronobacter spp. using chromogenic media and biochemical tests. Altogether, 72 Cronobacter spp. strains were isolated in accordance with the reference standard ?SN P ISO/TS 22964 (2006). No Cronobacter spp. strains were detected in 10 samples of infant milk formula or in samples from a dairy farm. Twelve out of 20 positive food samples were dry products. The incidence of Cronobacter spp. in instant and powdered products and spices (12 positive isolates out of 82 samples) was significantly higher than that in other foods (P?=?0.002), but lower than that in samples of dust (52 isolates; P?<?0.001). The incidence of Cronobacter spp. in dust from restaurants, bars and hotels (13 positive isolates in 20 samples) was significantly higher than that in dust from households (P?=?0.010). The polymerase chain reaction assay for the species-specific detection of the rpoB gene was performed in 49 isolates. Thirty-four Cronobacter spp. isolates were identified as Cronobacter sakazakii, nine isolates as Cronobacter malonaticus and one isolate as Cronobacter turicensis.  相似文献   

20.
The present attempt was made to determine the effects of untreated municipal wastewater (MW) on growth and physiology of maize and to evaluate the role of Ag nanoparticle and plant-growth-promoting rhizobacteria (PGPR) when interacting with MW used for irrigation. It was used for the isolation of PGPR. The isolates were identified and characterized based on the colony morphology, C/N source utilization pattern using miniaturized identification system (QTS 24), catalase (CAT) and oxidase tests, and 16S rRNA sequence analyses. The three PGPR isolates were Planomicrobium chinense (accession no. NR042259), Bacillus cereus (accession no. CP003187) and Pseudomonas fluorescens (accession no. GU198110). The isolates solubilized phosphate and exhibited antibacterial activities against pathogenic bacteria i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli and antifungal activities against Helminthosporium sativum and Fusarium solani. The untreated MW irrigation as well as Ag nanoparticle treatment resulted in significant accumulation of Ni in the rhizosphere soil. PGPR induced accumulation of Ni and Pb in the rhizosphere soil and maize shoot. Ag nanoparticle also caused Ni and Pb accumulation in maize shoot. Combined treatment with PGPR, Ag nanoparticle and MW resulted in decreased accumulation of Pb and Ni both in the rhizosphere soil and maize shoot. Combined treatment of Ag nanoparticle, MW and PGPR decreased Na accumulation and increased K accumulation. Ag nanoparticle increased Fe and Co accumulation but decreased Zn and Cu accumulation in MW treatment; in combined treatment, it reduced PGPR-induced accumulation of Co and Fe in the rhizosphere and Co accumulation in shoot. PGPR significantly increased root weight, shoot weight, root length, shoot length, leaf area, and proline, chlorophyll and carotenoid content of the maize plant. Ag nanoparticle also enhanced the leaf area, fresh weight, root length and antioxidant activities of maize. Treatment with Ag nanoparticle increased the gibberellic acid (GA) and abscisic acid (ABA) content of maize leaves but decreased the accumulation of GA in the presence of PGPR and MW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号