首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用扫描电镜观察了3目10科12属17种陆生贝类的齿舌形态.结果 显示,17种陆生贝类齿舌的中央齿均为1列,侧齿12~218列不等,缘齿0~204列不等.中央齿依齿片上小齿数目分为单齿型、三齿型和多齿型;侧齿与缘齿的形态多样,侧齿齿片上小齿数1~6枚不等,缘齿齿片上小齿数1~10枚不等.结合以往报道的38种陆生贝类齿舌...  相似文献   

2.
New finds of michelinoceratid cephalopods from the Kirusillas-Shale (Ludlow/Silurian) of Ushpa-Ushpa in the Eastern Cordillera of the Bolivian Andes reveal parts of the radula and imprints of arms owing to extremely good preservation conditions. The imprints of soft parts point that the orthoce-rates had 10 arms, two of them shaped to long tentacles as recent coleoids have. Of more importance is the first proof of a michelinoceratid radula in situ. This is the first known ra-dula of lower palaeozoic cephalopods at all. TheMichelinoceras radula consisted of 7 teeth per row. So the radulae of michelinoceratid cephalopods are very similar to those of ammonites and coleoids. But there are great differences in the radula ofMichelinoceras sp. and that ofNautilus sp. All known radulae of fossil and recent cephalopods are compared and phylogenetic or systematic implications are discussed. The classification of the cephalopods into six subclasses as used in the “Treatise” turns out to be unnatural and should be given up. Finally ecological relations between the morphology of radula-elements and mode of life are dis-cussed. Size and number of radula teeth let suppose that thisMichelinoceras specimen must have been an adult individual living far off the coast in pelagic seas.  相似文献   

3.
The main constituents of wheat flour and many wheat flour products are wheat protein (gluten) and starch granules. The specific staining of the protein present was effected by 10 min in 0.1% aqueous ponceau 2R (C.I. No. 16150) acidified with 3—4 drops of 1 N H2SO4 per 50 ml of staining solution, followed by rinsing in 2 changes of distilled water, dehydrating, clearing and mounting in a resinous medium in the normal way. Staining of starch was as follows: sections or flour smears were brought to water, treated for 10 min in a protein-blocking reagent (Taninol ADR—Imperial Chemical Industries—used in 1% aqueous solution) rinsed, then stained for 3 mins in 0.5% aqueous chlorazol violet R (C.I. No. 32445) or for 10 min in either 0.5% aqueous chlorazol violet N (C.I. No. 22570), or chlorazol black E (C.I. No. 30235). Staining was followed by thorough rinsing, normal dehydration and clearing and mounting in a medium of R.I. about 1.49 to enhance visibility of unstained starch grains. The methods are applicable to flour smears, cryostat and wax sections.  相似文献   

4.
Spermatophores and reproductive systems of the beetle, Lytta nuttalli Say, fixed in Bouin's aqueous picroformol or buffered 10% neutral formol were stained in toto by the Millon, Sudan black B and periodic acid-Schiff reactions as follows. Millon: after excess fixative is removed in 70% ethanol, specimens are brought to water, stained in Millon's reagent at 60 C for 1 hr, rinsed in 2% aqueous nitric acid at 40-50 C, dehydrated rapidly, cleared, embedded and sectioned as usual. Sudan black B: specimens are taken to absolute ethanol, stained in a saturated solution of Sudan black B in absolute ethanol at room temperature for 24-48 hr, rinsed and cleared in xylene, embedded and sectioned. PAS: specimens are brought to water, oxidized in 0.5 aqueous HIO4 at 37 C for 30 min, washed in 2 changes of water, stained in Schiif reagent at room temperature for 1 hr, rinsed in 3 changes of 0.5% aqueous potassium metabisulfite, washed in running water for 10-15 min, dehydrated, cleared, embedded and sectioned. All 3 methods produced their characteristic staining in specimens up to 3 mm thick  相似文献   

5.
The following technic is suggested for staining cell walls in shoot apexes: After the usual preliminary steps through 50% ethyl alcohol, stain in 1 % safranin 0 for 24 hours. Rinse in tap water and place in 2% aqueous tannic acid for 2 minutes. After rinsing in tap water, stain for 2 minutes in 1 part Delafield's hematoxylin to 2 parts distilled water and rinse in tap water. Remove excess hematoxylin with acidified water (1 drop cone. HC1 in 200 ml. water), then place slides in 0.5% lithium carbonate for 5 minutes. Dehydrate through an ethyl alcohol series, then transfer from absolute alcohol to a saturated solution of anilin blue in “methyl cellosolve” for 5-10 minutes. Wash in absolute alcohol, rinse in a solution of 25% methyl salicylate, 33% xylene, 42% absolute ethyl alcohol and clear for 10 minutes in a solution of 2 parts methyl salicylate, 1 part xylene, 1 part absolute ethyl alcohol. Transfer through two changes of xylene and mount in “clarite” or suitable alternate. The resulting preparations will have clearly defined, dark-staining cell walls and will photograph well when “Super Panchro-Press, Type B” film (Eastman Kodak Co.) is used in conjunction with suitable Wratten filters.  相似文献   

6.
In examination of radulae from all but one of the 36 speciesof the littorinid genus Littoraria we found extraordinary intraspecificvariation in those occurring on a range of substrates. Radulaefrom rock showed a less well developed `hood' on the rachidiantooth, a strikingly enlarged major cusp on each of the fivecentral teeth, fewer cusps on the outer marginal teeth and theradular ribbon was longer, when compared with radulae of conspecificsfrom plant substrates. The radulae of species found exclusivelyon rock differed in similar ways from those restricted to plantsubstrates (mangroves, driftwood and saltmarsh). We suggestthat this may be an example of phenotypic plasticity of radularform, induced by substrate and/or diet, as recently shown experimentallyin another littorinid genus. The mechanism of inducible plasticitydeserves further study. Ecotypic variation in the radula maybe widespread in littorinids, and radular characters shouldtherefore be used with caution in studies of taxonomy, phylogenyand adaptation. (Received 20 July 1998; accepted 10 November 1998)  相似文献   

7.
Tissues are fixed in either 10% formalin or Lavdow-sky's mixture. After the tissues are sectioned and mounted, they are stained in hematoxylin, then counterstained for 2 minutes in 0.1% aqueous azophloxine to which 4 drops of acetic acid have been added to each 100 ml. of stain. Sections are then rinsed in 0.2% acetic acid and dehydrated. Azophloxine GA can be used also in a tetrachrome method. Sections are stained in Harris' hematoxylin, washed, and placed in 0.2% acidified aqueous azophloxine for 2 minutes. They are then rinsed in 0.2% acetic acid, stained 1 minute in an aqueous mixture of 4% phosphotungstic acid and 2% orange G solution and rinsed again in 0.2% acetic acid. Finally, they are stained in 0.2% light green for 2 minutes, and differentiated in 0.2% acetic acid for 5 minutes. The advantage in using azophloxine is that it is clear and delicate and when used in a constant concentration, does not overstain if the recommended procedure is followed.  相似文献   

8.
以红条毛肤石鳖Acanthochiton rubrolineatus(Lischke)齿舌为材料,通过切片和酶组织化学技术,在光镜和电镜下对齿舌主侧齿的微结构及高铁还原酶的存在进行观察,从微观角度了解齿舌主侧齿齿尖的矿化机理。结果显示,成熟主侧齿由齿尖和齿基组成。齿尖结构由外至内分为三层,最外层为磁铁矿层,前后齿面磁铁矿层的厚度不等,后齿面约50μm,前齿面约5-10μm。向内依次为棕红色的纤铁矿层,厚约10μm,及略显黄色的有机基质层,有机基质层占据着齿尖内部的大部分结构。高分辨透射电镜下显示磁铁矿由条状四氧化三铁颗粒组成,长约2-3μm,宽约100-150nm。齿舌的矿化是一个连续过程,不同部段处于不同的矿化阶段,齿舌囊上皮细胞沿囊腔分布,并形成齿片。未矿化的新生主侧齿齿尖中存在由有机基质构成的网状结构。随矿化的进行,有机基质内出现矿物颗粒。初始矿化的齿尖外表面有一个细胞微突层,微突的另一端为囊上皮细胞,矿物质经由微突层达齿尖并沉积于有机基质中,齿尖随之矿化并成熟。初始矿化齿尖的外围有大量的三价铁化物颗粒,稍成熟的齿尖外围同时还出现二价铁化物。新生或初始矿化主侧齿齿尖外围的囊上皮细胞中有大量球形类似于铁蛋白聚集体的内容物,直径0.6-0.8μm,球体由膜包围。齿舌囊上皮组织中存在三价高铁还原酶,此酶分布于上皮细胞的膜表面,可能与齿尖表面磁铁矿的生成有一定的关系。    相似文献   

9.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration, sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections are counterstained with a variant of Van Gieson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff's elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

10.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration. sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections am counterstained with a variant of Van Girson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff s elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

11.
The staining quality of Bismarck brown Y may be improved and sterility maintained by adding 5% phenol to a 1% aqueous solution. Use the phenolic Bismarck brown in combination with iron alum hematoxylin except for stripped epidermis in the following procedures:

Stem and Root Schedule: Mordant sections from water in 4% iron alum for 10 minutes. Rinse in distilled water and stain in 0.5% aqueous hematoxylin for 1 minute or until darkly stained. Rinse in distilled water and destain in 2% iron alum until a gray color appears. Rinse thoroly in distilled water and intensify hematoxylin by transferring sections to 0.5% aqueous lithium carbonate until the desired black color appears. Rinse thoroly in distilled water and stain for 1-5 minutes in phenolic Bismarck brown. Rinse in distilled water, dehydrate successively in 30, 50, 70, 95 and 100% alcohol. Clear in methyl salicylate for 5 minutes, then to xylene for 3-5 minutes, and mount in balsam.

Middle Lamellae in Wood: Destain more thoroly in 2% iron alum than for the general stem and root schedule, and intensify in lithium carbonate for a longer period (about 1 hour).

White Potato Tuber Sections: Modify above schedule by reducing time of destaining in 2% iron alum to about 30-60 seconds and intensify hematoxylin until starch grains appear bluish in color. Stain in phenolic Bismarck brown for 1-2 minutes.

Wheat Grain Sections: Fix grain for sectioning when in “dough” stage. Use schedule the same as for potato tuber except for reducing time of staining in phenolic Bismarck brown to about 45 seconds.

Tradescantia zebrina Epidermis: Strip epidermis from leaf while submerged in water. Fix in 100% alcohol 10 minutes, pass thru 95, 70, 50, 30, and 10% alcohol to water. Stain in phenolic Bismarck brown for 10-20 minutes. Dehydrate, clear in methyl salicylate and mount in balsam.  相似文献   

12.
Lead tetra-acetate acts specifically to split the carbon-carbon single bond of the 1,2-glycol linkage to produce aldehyde radicals which may then be demonstrated by means of leucofuchsin, 2,4-dinitrophenlyhydrazine, or p-nitrophenylhydrazine. Routinely prepared slide sections from tissues fixed in 10% formalin are run down to 95% alcohol, rinsed in glacial acetic acid and then treated for 2 minutes in a saturated solution of lead tetra-acetate in glacial acetic acid with 5 g. of potassium acetate added for each 100 ml. of reagent. The sections are then washed in distilled water and placed in leucofuchsin for 10 minutes, or in a saturated 30% alcoholic solution of p-nitrophenylhydrazine for 5 minutes or 2,4-dini-trophenylhydrazine for 30 minutes. After staining, the sections are rinsed in 30% alcohol if the nitrophenylhydrazines were used, or in the standard dilute sulfite bath followed by running tap water for 5 minutes if leucofuchsin were used. Sections are routinely dehydrated, cleared, and covered. On examination, the sites of 1,2-glycol linkages will be stained violet by leucofuchsin or yellow by the nitrophenylhydrazines.  相似文献   

13.
Histochemical 1,2-glycoI cleavage, similar to that obtained with periodic acid and lead tetraacetate, may be obtained with sodium bismuthate. Routinely prepared slide sections, from tissues fixed in 10% formalin, are run down through xylene and graded alcohols to water and then oxidized for three minutes in a 1% sodium bismuthate 20% aqueous phosphoric acid solution. The oxidizing solution must be freshly prepared and used immediately. Following oxidation, sections are rinsed 15 sec. in IN HC1 to remove bismuth pentoxide precipitate, a by-product of the reaction. The sections are then washed in distilled water and placed in leuco-fushsin for 10 min., or in a saturated 30%) alcoholic solution of p-nitrophenylhydrazine for 5 min. or 2,4-dinitrophenylhydrazine for 30 minutes. After staining, the sections are rinsed in 30% alcohol if the nitrophenylhydrazines were used, or in the standard dilute sulfite bath followed by running tap water for 5 min. if leucofuchsin were used. Sections are routinely dehydrated, cleared, and covered. On examination, the sites of 1,2-glycol linkages will be stained violet by leucofushsin or yellow by the nitrophenylhydrazines.  相似文献   

14.
Histochemical 1,2-glycoI cleavage, similar to that obtained with periodic acid and lead tetraacetate, may be obtained with sodium bismuthate. Routinely prepared slide sections, from tissues fixed in 10% formalin, are run down through xylene and graded alcohols to water and then oxidized for three minutes in a 1% sodium bismuthate 20% aqueous phosphoric acid solution. The oxidizing solution must be freshly prepared and used immediately. Following oxidation, sections are rinsed 15 sec. in IN HC1 to remove bismuth pentoxide precipitate, a by-product of the reaction. The sections are then washed in distilled water and placed in leuco-fushsin for 10 min., or in a saturated 30%) alcoholic solution of p-nitrophenylhydrazine for 5 min. or 2,4-dinitrophenylhydrazine for 30 minutes. After staining, the sections are rinsed in 30% alcohol if the nitrophenylhydrazines were used, or in the standard dilute sulfite bath followed by running tap water for 5 min. if leucofuchsin were used. Sections are routinely dehydrated, cleared, and covered. On examination, the sites of 1,2-glycol linkages will be stained violet by leucofushsin or yellow by the nitrophenylhydrazines.  相似文献   

15.
PAS-toluidine blue O—aniline blue staining of paraffin sections allows study of histological and cytological detail while retaining aniline blue induced fluorescence in all “callose sites”. Because most autofluorescence is eliminated by the PAS-toluidine blue prestaining, the detail and contrast of the fluorescence image is superior to slides stained in aniline blue alone. Slides are stained by the PAS reaction, 0.03% toluidine blue O, alkaline 0.005% aniline blue, and mounted directly in aqueous mounting medium.  相似文献   

16.
Rat and rabbit brains containing surgical lesions of 5-10 days' duration were fixed in 10% formalin (neutralized with calcium carbonate) for 1 week to 6 months. Frozen sections (15-20 n) were rinsed and then soaked 7 minutes in a 1.7% solution of strong ammonia in distilled water. Subsequent treatment was as follows: rinse; 0.05% aqueous potassium permanganate 5-15 minutes; 0.5% aqueous potassium metabisulfite, 2 changes of 2.5 minutes each; wash thoroughly in 3 changes distilled water; 1.5% aqueous silver nitrate, 0.5-1.0 hr.; 1% citric acid, 5-10 sec.; 2 changes distilled water; 1% sodium thiosulfate, 30 see.; 3 changes distilled water. Each section is then processed separately. Ammoniacal silver solution (450 mg. silver nitrate in 10 ml. distilled water; add 5 ml. ethanol; let cool to room temperature; add 1 ml. strong ammonia water and 0.9 ml. of 2.5% aqueous sodium hydroxide), 0.5-1.0 min. with gentle agitation. Reduction of about 1 minute is accomplished in: distilled water, 45 ml.; ethanol, 5 ml.; 10% formalin, 1.5 ml.; 1% citric acid, 1.5 ml. Rinsing; 1% sodium thiosulfate, 10 sec.; thorough washing followed by dehydration through graded alcohol and 3 changes of xylene or toluene complete the staining process. Normal nerve fibers are slightly stained to unstained, degenerating fibers, black. The treatment in potassium permanganate is critical since too little favors overstaining of normal fibers and too much abolishes staining of degenerating fibers.  相似文献   

17.
Selective staining of dividing nuclei is accomplished as follows: paraffin sections, after hydration, are stained 15 min in a saturated aqueous solution of basic fuchsin, washed, then stained 1.5 min in an equal-volumes mixture of indigo carmine saturated in 70% alcohol, and saturated aqueous picric acid. Removal of excess dye with 3 changes of 70% alcohol, dehydration, clearing and covering in a resinous medium completes the process. Nuclei of dividing cells are stained red; cytoplasm and interphase nuclei, light green. This method has been used successfully for determining the mitotic activity of skin, kidney, liver and other rabbit and mouse tissues. Tissue sections previously prepared as autoradiographs may be stained by this method to facilitate the determination of radioactive labeling of mitotic cells.  相似文献   

18.
Young leaf tips are soaked in a saturated aqueous esculin (aesculine) solution at 10-12° C for 15 min to 24 hr and fixed in acetic-alcohol, 1:1. The materials are then stained in a mixture of 2% aceto-orcein and 12V HCl (9:1), 3-4 sec over a flame followed by 30 min or longer at 30° C and then smeared in 1% aceto-orcein. Preparations are made permanent by loosening the cover glass in tertiary butyl alcohol and mounting directly in Canada balsam.  相似文献   

19.
A polychrome stain procedure was developed to demonstrate amastigotes of the protozoan parasite Leishmania braziliensis as well as cytoplasmic and other tissue components in cutaneous lesions of infected animals. The procedure is as follows: stain nuclei for 10 minutes with an iron hematoxylin containing 0.5% hematoxylin and 0.75% ferric ammonium sulfate dissolved in 1:1 0.6 N H2SO4:95% ethanol; rinse 4 minutes in distilled water. Cytoplasmic staining is achieved by exposing tissues for 10 minutes to a solution containing 0.25% Biebrich scarlet, 0.45% orange G, 0.5% phosphomolybdic acid and 0.5% phosphotungstic acid in 1% aqueous acetic acid. These first two solutions are modified from Whipf's polychrome stain. Sections are differentiated for 10 seconds in 50% ethanol, rinsed in water, stained 3 minutes in 0.1% aniline blue WS in saturated aqueous picric acid, rinsed in water and differentiated for 1 minute in absolute ethanol containing 0.05% acetic acid. Mordanting overnight in 6% picric acid in 95% ethanol produced optimal results.

This procedure was applied to sectioned material from experimental animals with various protozoa. Trypanosoma cruzi, Besnoitia Jellisoni, Toxoplasma gondii and especially Leishmania braziliensis were well demonstrated. Combining cytoplasmic dyes and phosphomolybdic-phosphotungstic acids into one solution afforded differential staining of tissues by Biebrich scarlet and orange G; connective tissues were stained by this solution. Substantially improved definition of connective tissues resulted after counterstaining. This procedure differs from the Massou sequence in which connective tissues are first stained by cytoplasmic dyes along with other tissues and then destained prior to specific counter-staining. in comparing dyes structurally related to Biebrich scarlet, it was found that Crocein scarlet MOO, but not Poncenu S, was an acceptable substitute. Sirius supra blue GL and Sirius red FSBA were not useful as replacements for aniline blue WS in this procedure.  相似文献   

20.
The radula is the basic feeding structure in gastropod molluscs and exhibits great morphological diversity that reflects the exceptional anatomical and ecological diversity occurring in these animals. This uniquely molluscan structure is formed in the blind end of the radular sac by specialized cells (membranoblasts and odontoblasts). Secretion type, and the number and shape of the odontoblasts that form each tooth characterize the mode of radula formation. These characteristics vary in different groups of gastropods. Elucidation of this diversity is key to identifying the main patterns of radula formation in Gastropoda. Of particular interest would be a phylogenetically closely related group that is characterized by high variability of the radula. One such group is the large monophyletic superfamily Conoidea, the radula of which is highly variable and may consist of the radular membrane with five teeth per row, or the radular membrane with only two or three teeth per row, or even just two harpoon-like teeth per row without a radular membrane. We studied the radulae of two species of Conoidea (Clavus maestratii Kilburn, Fedosov & Kantor, 2014 [Drilliidae] and, Lophiotoma acuta (Perry, 1811) [Turridae]) using light and electron microscopy. Based on these data and previous studies, we identify the general patterns of the radula formation for all Conoidea: the dorsolateral position of two groups of odontoblasts, uniform size, and shape of odontoblasts, folding of the radula in the radular sac regardless of the radula configuration. The morphology of the subradular epithelium is most likely adaptive to the radula type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号