首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yang X  Kurteva S  Ren X  Lee S  Sodroski J 《Journal of virology》2005,79(19):12132-12147
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.  相似文献   

2.
Ebola virus (EboV) and Marburg virus (MarV) (filoviruses) are the causative agents of severe hemorrhagic fever. Infection begins with uptake of particles into cellular endosomes, where the viral envelope glycoprotein (GP) catalyzes fusion between the viral and host cell membranes. This fusion event is thought to involve conformational rearrangements of the transmembrane subunit (GP2) of the envelope spike that ultimately result in formation of a six-helix bundle by the N- and C-terminal heptad repeat (NHR and CHR, respectively) regions of GP2. Infection by other viruses employing similar viral entry mechanisms (such as HIV-1 and severe acute respiratory syndrome coronavirus) can be inhibited with synthetic peptides corresponding to the native CHR sequence ("C-peptides"). However, previously reported EboV C-peptides have shown weak or insignificant antiviral activity. To determine whether the activity of a C-peptide could be improved by increasing its intracellular concentration, we prepared an EboV C-peptide conjugated to the arginine-rich sequence from HIV-1 Tat, which is known to accumulate in endosomes. We found that this peptide specifically inhibited viral entry mediated by filovirus GP proteins and infection by authentic filoviruses. We determined that antiviral activity was dependent on both the Tat sequence and the native EboV CHR sequence. Mechanistic studies suggested that the peptide acts by blocking a membrane fusion intermediate.  相似文献   

3.
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.  相似文献   

4.
Interferon‐induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3‐dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin‐mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion.  相似文献   

5.
By virtue of their multiple interactions with partner proteins and due to their strong propensity to multimerize, tetraspanins create scaffolds in membranes, recruiting or excluding specific proteins needed for particular cellular processes. We and others have shown that (i) HIV-1 assembles at, and buds through, membrane areas that are enriched in tetraspanins CD9, CD63, CD81 and CD82, and (ii) the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. In the present paper, I review these findings and briefly discuss the results of our ongoing investigations that are aimed at elucidating when and how tetraspanins regulate this fusion process and how such control affects virus spreading. Finally, I give a preview of studies that we have initiated more recently and which aim to delineate exactly when CD81 functions during the replication of another enveloped RNA virus: influenza virus.  相似文献   

6.
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever—a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit—a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.  相似文献   

7.
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by beta-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens.  相似文献   

8.
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.  相似文献   

9.
To initiate an infection human immunodeficiency virus type 1 (HIV-1) particles must first bind to receptors on the surface of their host cells, a process that eventually leads to fusion of viral and cellular membranes and release of the viral genome into the cytoplasm. Understanding the molecular mechanisms of these processes may enable the development of new anti-HIV strategies. Disagreement currently prevails on the role in virus entry of microdomains within the cellular plasma membrane known as lipid rafts. Experiments have suggested that lipid rafts, in their interactions with cellular receptors and viral particles, either promote or have minimal effect on viral entry. Here we develop a dynamic model for HIV-1 entry that enables us to identify and quantitatively assess tradeoffs that can arise from the clustering of receptors in rafts. Specifically, receptor clustering can be detrimental to the initiation of viral infection by reducing the probability that a virus particle finds its primary receptor, CD4. However, receptor clustering can also enable a virus particle, once bound, to rapidly form multivalent interactions with receptors and co-receptors that are required for virus-cell membrane fusion. We show how the resolution of such tradeoffs hinges on the level and spatial distribution of receptors and co-receptors on the cell surface, and we discuss implications of these effects for the design of therapeutics that inhibit HIV-1 entry.  相似文献   

10.
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.  相似文献   

11.
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.  相似文献   

12.
Entry of lentiviruses, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), requires folding of two heptad repeat regions (HR1 and HR2) of gp41 into a trimer-of-hairpins, which subsequently brings virus and cell membrane into fusion. This motif is a generalized feature of viral fusion proteins and has been exploited in generating antiviral fusion agents. In the present paper, we report structural characters of Env protein from another lentivirus, bovine immunodeficiency virus (BIV), which contributes to a good animal model of HIV. BIV HR1 and HR2 regions are predicted by two different programs and expressed separately or conjointly in Escherichia coli. Biochemical and biophysical analyses show that the predicted HRs of BIV Env can form a stable trimer-of-hairpins or six-helix bundle just like that formed by feline immunodeficiency virus Env. Cell fusion assay demonstrates that the HR2 peptide of BIV can efficiently inhibit the virus-mediated cell fusion.  相似文献   

13.
The membrane-interacting abilities of three sequences representing the putative fusogenic subdomain of the Ebola virus transmembrane protein have been investigated. In the presence of calcium, the sequence EBOGE (GAAIGLAWIPYFGPAAE) efficiently fused unilamellar vesicles composed of phosphatidylcholine, phosphatidylethanolamine, cholesterol, and phosphatidylinositol (molar ratio, 2:1:1:0.5), a mixture that roughly resembles the lipid composition of the hepatocyte plasma membrane. Analysis of the lipid dependence of the process demonstrated that the fusion activity of EBOGE was promoted by phosphatidylinositol but not by other acidic phospholipids. In comparison, EBOEA (EGAAIGLAWIPYFGPAA) and EBOEE (EGAAIGLAWIPYFGPAAE) sequences, which are similar to EBOGE except that they bear the negatively charged glutamate residue at the N terminus and at both the N and C termini, respectively, induced fusion to a lesser extent. As revealed by binding experiments, the glutamate residue at the N terminus severely impaired peptide-vesicle interaction. In addition, the fusion-competent EBOGE sequence did not associate significantly with vesicles lacking phosphatidylinositol. Tryptophan fluorescence quenching by vesicles containing brominated phospholipids indicated that the EBOGE peptide penetrated to the acyl chain level only when the membranes contained phosphatidylinositol. We conclude that binding and further penetration of the Ebola virus putative fusion peptide into membranes might be governed by the nature of the N-terminal residue and by the presence of phosphatidylinositol in the target membrane. Moreover, since insertion of such a peptide leads to membrane destabilization and fusion, the present data would be compatible with the involvement of this sequence in Ebola virus fusion.Ebola virus belongs to the Filoviridae family (23). This human pathogen occasionally causes epidemics of African hemorrhagic fever with a high rate of mortality (8, 23, 37). Little is known about the viral infectivity mechanism, and there is no specific treatment for Ebola virus hemorrhagic fever as yet. The most prominent pathology of Ebola virus infection includes necrosis of liver parenchyma as a direct consequence of virus replication (23). Ebola virus virions are composed of a helical nucleocapsid containing one linear, negative-sense, single-stranded RNA and surrounded by a lipidic envelope derived from the host cell plasma membrane (8, 23). The envelope contains solely one type of highly glycosylated protein (Ebola GP) arranged into oligomers, most probably trimers, which constitute the spikes that protrude from the virion surface (8, 30, 38, 39).The mode of entry of Ebola virus into target cells remains unknown. However it seems likely that the single surface protein Ebola GP is responsible for both receptor binding and membrane fusion during entry into the host cells. Homology analysis of its coding gene-derived sequence has identified several structural features that Ebola GP shares with other envelope fusion proteins derived from oncogenic retroviruses (12, 39). Just recently a detailed analysis has detected a high degree of structural homology between Ebola GP and the Rous sarcoma virus transmembrane protein (12). Several structural elements that might be involved in the ectodomain fusogenic function are shared by these viruses. In particular, there exists in both viruses an amino acid region bounded by cysteines that has at its center a sequence of approximately 16 uncharged and hydrophobic residues. Its location with respect to the viral membrane, the presence of a canonical fusion tripeptide (YFG in Ebola virus), and the fact that this sequence exhibits a high degree of identity among the Filoviridae members suggest that this region might constitute in Ebola virus the fusion peptide that is critical for virion-membrane fusion in the Retroviridae and other families (11, 40, 41).According to the most widely accepted mechanistic model proposed for the initial phase of the viral fusion process, activation of the viral spikes induces the exposure of previously buried hydrophobic fusion peptides in the vicinity of the target cell (5, 43). Further interaction of the viral fusion peptides with the cell membrane would depend mainly on the capacity for binding of these peptides to the membrane lipid components and could eventually trigger the process that brings about the actual merging of the viral and cell membranes via a currently unknown mechanism (41). This fact has justified the development of in vitro studies on the membrane-destabilizing effects of fusion peptides by using representative synthetic peptides of different viruses and model membranes (7, 15, 19, 29).The membrane environment into which the fusion peptide should partition obviously plays an important role in the process. Previous work from this laboratory has focused on the effect of the target membrane composition on viral fusion. Reports from this and other laboratories indicate the existence of conformational changes induced by lipidic components in the membrane-bound human immunodeficiency virus type 1 (HIV-1) fusion peptide (25, 28, 29), and we have identified a fusogenic conformation of the peptide represented by an extended β-type structure (25, 26, 28). The fusogenic interaction of the HIV-1 fusion peptide is, moreover, sensitive to factors that affect gp41 activity in vivo (27). Modulation of viral fusion by lipids has also been observed for complete virions and reconstituted systems fusing with model membranes (6, 24, 42). These observations indicate that enveloped viruses may optimize host interactions during the entry process, not only at the level of the selective binding to cell receptors but also at the level of the envelope fusion and subsequent capsid penetration.Our primary objective in this study was to confirm that the proposed fusogenic sequence for Ebola virus might interact with membranes, destabilize them, and eventually induce fusion. Because Ebola virus infects and replicates very efficiently in the liver, we initially employed as target membranes large unilamellar vesicles (LUV) made of a lipidic mixture that represents the hepatocyte plasma membrane composition (18). Our results demonstrate that this Ebola virus peptide interacts with phosphatidylinositol (PI)-containing membranes and induces vesicle fusion. Moreover, we show that the sequence lacking the negatively charged Glu residue at the N terminus interacts more efficiently with membranes. These data suggest that, similarly to the HIV-1 fusion peptide (2628), the Ebola virus peptide segment under study may be important in viral fusion in vivo.  相似文献   

14.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

15.
The structural biology of type I viral membrane fusion   总被引:1,自引:0,他引:1  
The fusion of viral membranes with target-cell membranes is an essential step in the entry of enveloped viruses into cells, and recent X-ray structures of paramyxoviral envelope proteins have provided new insights into protein-mediated plasma-membrane fusion. Here, we review our understanding of the structural transitions that are involved in this fusion pathway, compare it to our understanding of influenza virus membrane fusion, and discuss the implications for retroviral membrane fusion.  相似文献   

16.
Ou W  Silver J 《Journal of virology》2005,79(8):4782-4792
A conserved structural motif in the envelope proteins of several viruses consists of an N-terminal, alpha-helical, trimerization domain and a C-terminal region that refolds during fusion to bind the N-helix trimer. Interaction between the N and C regions is believed to pull viral and target membranes together in a crucial step during membrane fusion. For several viruses with type I fusion proteins, C regions pack as alpha-helices in the grooves between N-helix monomers, and exogenously added N- and C-region peptides block fusion by inhibiting the formation of the six-helix bundle. For other viruses, including influenza virus and murine leukemia virus (MLV), there is no evidence for comparably extended C-region alpha-helices, although a short, non-alpha-helical interaction structure has been reported for influenza virus. We tested candidate N-helix and C-region peptides from MLV for their ability to inhibit cell fusion but found no inhibitory activity. In contrast, intracellular expression of the MLV N-helix inhibited fusion by efficiently blocking proteolytic processing and intracellular transport of the envelope protein. The results highlight another mechanism by which the N-helix peptides can inhibit fusion.  相似文献   

17.
Li Z  Blissard GW 《Journal of virology》2008,82(7):3329-3341
GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. In the current study, we examined the functional role of the AcMNPV GP64 transmembrane (TM) domain by replacing the 23-amino-acid GP64 TM domain with corresponding TM domain sequences from a range of viral and cellular type I membrane proteins, including Orgyia pseudotsugata MNPV (OpMNPV) GP64 and F, thogotovirus GP75, Lymantria dispar MNPV (LdMNPV) F, human immunodeficiency virus type 1 (HIV-1) GP41, human CD4 and glycophorin A (GpA), and influenza virus hemagglutinin (HA), and with a glycosylphosphatidylinositol (GPI) anchor addition sequence. In transient expression experiments with Sf9 cells, chimeric GP64 proteins containing either a GPI anchor or TM domains from LdMNPV F or HIV-1 GP41 failed to localize to the cell surface and thus appear to be incompatible with either GP64 structure or cell transport. All of the mutant constructs detected at the cell surface mediated hemifusion (outer leaflet merger) upon low-pH treatment, but only those containing TM domains from CD4, GpA, OpMNPV GP64, and thogotovirus GP75 mediated pore formation and complete membrane fusion activity. This supports a model in which partial fusion (hemifusion) proceeds by a mechanism that is independent of the TM domain and the TM domain participates in the enlargement or expansion of fusion pores after hemifusion. GP64 proteins containing heterologous TM domains mediated virion budding with dramatically differing levels of efficiency. In addition, chimeric GP64 proteins containing TM domains from CD4, GpA, HA, and OpMNPV F were incorporated into budded virions but were unable to rescue the infectivity of a gp64 null virus, whereas those with TM domains from OpMNPV GP64 and thogotovirus GP75 rescued infectivity. These results show that in addition to its basic role in membrane anchoring, the GP64 TM domain is critically important for GP64 trafficking, membrane fusion, virion budding, and virus infectivity. These critical functions were replaced only by TM domains from related viral membrane proteins.  相似文献   

18.
Various peptide segments have been modeled as asymmetric amphipathic alpha-helices. Theoretical calculations have shown that they insert obliquely into model membranes. They have been named "tilted peptides". Molecular modeling results reported here also evidence the presence of tilted peptides in ADM-1 protein of Caenorhabditis elegans that may be involved in fusion events, in meltrin alpha, a protein implicated in myoblast fusion, in hemagglutinin of influenza virus, in the E2 glycoprotein of rubella virus, in the S protein of hepatitis B virus, in a subdomain of Ebola virus and in the malaria CS protein. Experimental results have indicated that tilted peptide fragments may be involved in cellular life events like sperm-egg fecondation, muscle development, protein translocation through signal sequences and cellular death caused by viral infection or parasite infestation. We speculate that membrane destabilization by these tilted peptides may be an important common step in life processes involving fusion phenomena.  相似文献   

19.
Various fusion proteins from eukaryotes and viruses share structural similarities such as a coiled coil motif. However, compared with eukaryotic proteins, a viral fusion protein contains a fusion peptide (FP), which is an N-terminal hydrophobic fragment that is primarily involved in directing fusion via anchoring the protein to the target cell membrane. In various eukaryotic fusion proteins the membrane targeting domain is cysteine-rich and must undergo palmitoylation prior to the fusion process. Here we examined whether fatty acids can replace the FP of human immunodeficiency virus type 1 (HIV-1), thereby discerning between the contributions of the sequence versus hydrophobicity of the FP in the lipid-merging process. For that purpose, we structurally and functionally characterized peptides derived from the N terminus of HIV fusion protein - gp41 in which the FP is lacking or replaced by fatty acids. We found that fatty acid conjugation dramatically enhanced the capability of the peptides to induce lipid mixing and aggregation of zwitterionic phospholipids composing the outer leaflet of eukaryotic cell membranes. The enhanced effect of the acylated peptides on membranes was further supported by real-time atomic force microscopy (AFM) showing nanoscale holes in zwitterionic membranes. Membrane-binding experiments revealed that fatty acid conjugation did not increase the affinity of the peptides to the membrane significantly. Furthermore, all free and acylated peptides exhibited similar α-helical structures in solution and in zwitterionic membranes. Interestingly, the fusogenic active conformation of N36 in negatively charged membranes composing the inner leaflet of eukaryotic cells is β-sheet. Apparently, N-terminal heptad repeat (NHR) can change its conformation as a response to a change in the charge of the membrane head group. Overall, the data suggest an analogy between the eukaryotic cysteine-rich domains and the viral fusion peptide, and mark the hydrophobic nature of FP as an important characteristic for its role in lipid merging.  相似文献   

20.
Extracellular cleavage of virus envelope fusion glycoproteins by host cellular proteases is a prerequisite for the infectivity of mammalian and nonpathogenic avian influenza viruses, and Sendai virus. Here we report a protease present in the airway that, like tryptase Clara, can process influenza A virus haemagglutinin and Sendai virus envelope fusion glycoprotein. This protease was extracted from the membrane fraction of rat lungs, purified and then identified as a mini-plasmin. Mini-plasmin was distributed predominantly in the epithelial cells of the upward divisions of bronchioles and potentiated the replication of broad-spectrum influenza A viruses and Sendai virus, even that of the plasmin-insensitive influenza A virus strain. In comparison with plasmin, its increased hydrophobicity, leading to its higher local concentrations on membranes, and decreased molecular mass may enable mini-plasmin to gain ready access to the cleavage sites of various haemagglutinins and fusion glycoproteins after expression of these viral proteins on the cell surface. These findings suggest that mini-plasmin in the airway may play a pivotal role in the spread of viruses and their pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号