共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Desiree Abdurrachim Jolita Ciapaite Bart Wessels Miranda Nabben Joost J.F.P. Luiken Klaas Nicolay Jeanine J. Prompers 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(10):1525-1537
Obesity is often associated with abnormalities in cardiac morphology and function. This study tested the hypothesis that obesity-related cardiomyopathy is caused by impaired cardiac energetics. In a mouse model of high-fat diet (HFD)-induced obesity, we applied in vivo cardiac 31P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) to investigate cardiac energy status and function, respectively. The measurements were complemented by ex vivo determination of oxygen consumption in isolated cardiac mitochondria, the expression of proteins involved in energy metabolism, and markers of oxidative stress and calcium homeostasis. We also assessed whether HFD induced myocardial lipid accumulation using in vivo 1H MRS, and if this was associated with apoptosis and fibrosis. Twenty weeks of HFD feeding resulted in early stage cardiomyopathy, as indicated by diastolic dysfunction and increased left ventricular mass, without any effects on systolic function. In vivo cardiac phosphocreatine-to-ATP ratio and ex vivo oxygen consumption in isolated cardiac mitochondria were not reduced after HFD feeding, suggesting that the diastolic dysfunction was not caused by impaired cardiac energetics. HFD feeding promoted mitochondrial adaptations for increased utilization of fatty acids, which was however not sufficient to prevent the accumulation of myocardial lipids and lipid intermediates. Myocardial lipid accumulation was associated with oxidative stress and fibrosis, but not apoptosis. Furthermore, HFD feeding strongly reduced the phosphorylation of phospholamban, a prominent regulator of cardiac calcium homeostasis and contractility. In conclusion, HFD-induced early stage cardiomyopathy in mice is associated with lipotoxicity-associated oxidative stress, fibrosis, and disturbed calcium homeostasis, rather than impaired cardiac energetics. 相似文献
4.
Satoshi Kajikawa Tsuyoshi HaradaAkiko Kawashima Kazunori ImadaKiyoshi Mizuguchi 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(4):281-288
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) remains largely unknown. Here, we assessed the importance of hepatic fat accumulation on the progression of hepatitis. BALB/cA mice were fed with a standard diet (STD) or a high-fat and high-sucrose diet (HFHSD) for 14 days followed by intraperitoneal injection of d-galactosamine (DGalN) or vehicle. After 20–21 h, plasma and liver tissue were collected and analyzed. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were increased significantly in HFHSD-fed mice treated with DGalN compared to STD-fed mice treated with DGalN. This exacerbation by the HFHSD was also observed in the plasma soluble tumor necrosis factor receptor (sTNFR) levels, and hepatic levels of reactive oxygen species (ROS) and the fibrogenic gene expression, such as tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), connective tissue growth factor (CTGF) and osteopontin (OPN) in HFHSD-fed mice treated with DGalN. The triglyceride contents of the liver were significantly increased by the HFHSD. When eicosapentaenoic acid (EPA), a suppressor of sterol regulatory element binding protein 1 (SREBP-1), was administered to HFHSD-fed mice, the sensitivity of DGalN, as a result of plasma ALT and AST levels, was suppressed accompanied by reduced plasma sTNFR2 level and hepatic levels of triglyceride, ROS, and fibrogenic parameters, and by increased plasma adiponectin levels. These data suggest that the progression of steatotic liver injury closely depends on the accumulation of fat in the liver and is prevented by EPA through the suppression of the fatty liver change. 相似文献
5.
Victoria J. Vieira Rudy J. Valentine Kenneth R. Wilund Jeffrey A. Woods 《Cytokine》2009,46(3):339-345
Consumption of a high-fat diet (HFD) is associated with white adipose tissue (WAT) inflammation, which contributes to key components of the metabolic syndrome, including insulin resistance (IR) and hepatic steatosis (HS). To determine the differential effects of exercise training (EX), low-fat diet (LFD), and their combination on WAT inflammation, Balb/cByJ male mice (n = 34) were fed an HFD for 12 wks before they were randomized into one of four intervention groups: HFD-EX, LFD-EX, HFD-sedentary (SED), or LFD-SED. EX mice performed 12 wks of exercise training on a motorized treadmill (1 h/d, 5 d/wk, 12 m/min, 5% grade, 65% VO2 max), while SED mice remained sedentary in their home cages. WAT gene expression of adipokines was assessed using rt-PCR. IR was measured using HOMA-IR, and HS via hepatic triglyceride content. EX significantly reduced (53%) WAT gene expression of MCP-1, and LFD significantly reduced (50%) WAT gene expression of the macrophage specific marker, F4/80 as well as the adipocytokine IL-1ra (25%). EX independently improved IR, while both EX and LFD improved HS. These findings suggest that both diet and exercise have unique beneficial effects on WAT inflammatory markers and the mechanism by which each treatment improves metabolic complications associated with chronic consumption of an HFD may be different. 相似文献
6.
Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet 总被引:19,自引:0,他引:19
Kawaguchi K Sakaida I Tsuchiya M Omori K Takami T Okita K 《Biochemical and biophysical research communications》2004,315(1):187-195
Non-alcoholic steatohepatitis (NASH) may progress to liver cirrhosis, and NASH patients with liver cirrhosis have a risk of development of hepatocellular carcinoma. Peroxisome proliferator-activated receptor (PPAR) gamma ligand has recently been reported to have improved the condition of patients with NASH. The aim of this study was to investigate whether pioglitazone, a PPARgamma ligand, has any influence on the animal model of NASH as well as isolated hepatic stellate cells. In vivo, the effects of pioglitazone were examined using the choline-deficient L-amino acid-defined (CDAA)-diet liver fibrosis model. After two weeks, pioglitazone improved hepatic steatosis, prevented liver fibrosis, and reduced preneoplastic lesions in the liver after 10 weeks. Pioglitazone reduced the expression of TIMP-1 and TIMP-2 mRNA without changing MMP-13 mRNA expression compared to the liver fed a CDAA diet alone. In vitro, pioglitazone prevented the activation of hepatic stellate cells resulting in reducing the expression of type I procollagen, MMP-2, TIMP-1, and TIMP-2 mRNA with increased MMP-13 mRNA expression. These results indicate that pioglitazone may be one of the candidates for the benefit drugs for the liver disease of patients with NASH. 相似文献
7.
Thomas A Stevens AP Klein MS Hellerbrand C Dettmer K Gronwald W Oefner PJ Reinders J 《Proteomics》2012,12(9):1437-1451
Despite the increasing incidence of nonalcoholic steatohepatitis (NASH) with the rise in lifestyle-related diseases such as the metabolic syndrome, little is known about the changes in the liver proteome that precede the onset of inflammation and fibrosis. Here, we investigated early changes in the liver-soluble proteome of female C57BL/6N mice fed an NASH-inducing diet by 2D-DIGE and nano-HPLC-MS/MS. In parallel, histology and measurements of hepatic content of triglycerides, cholesterol and intermediates of the methionine cycle were performed. Hepatic steatosis manifested itself after 2 days of feeding, albeit significant changes in the liver-soluble proteome were not evident before day 10 in the absence of inflammatory or fibrotic signs. Proteomic alterations affected mainly energy and amino acid metabolism, detoxification processes, urea cycle, and the one-carbon/S-adenosylmethionine pathways. Additionally, intermediates of relevant affected pathways were quantified from liver tissue, confirming the findings from the proteomic analysis. 相似文献
8.
It has been suggested that nutritional manipulations during the first weeks of life can alter the development of the hypothalamic circuits involved in energy homeostasis. We studied the expression of a large number of the hypothalamic neuropeptide mRNAs that control body weight in mice that were overfed during breastfeeding (mice grown in a small litter, SL) and/or during adolescence (adolescent mice fed a high-fat diet, AHF). We also investigated possible alterations in mRNA levels after 50 days of a high-fat diet (high-fat challenge, CHF) at 19 weeks of age. Both SL and AHF conditions caused overweight during the period of developmental overfeeding. During adulthood, all of the mouse groups fed a CHF significantly gained weight in comparison with mice fed a low-fat diet, but the mice that had undergone both breast and adolescent overfeeding (SL-AHF-CHF mice) gained significantly more weight than the control CHF mice. Of the ten neuropeptide mRNAs studied, only neuropeptide Y (NPY) expression was decreased in all of the groups of developmentally overfed adult mice, but CHF during adulthood by itself induced a decrease in NPY, agouti-related protein (AgRP) and orexin (Orx) mRNA levels. Moreover, in the developmentally overfed CHF mice NPY, AgRP, galanin (GAL) and galanin-like peptide (GalP) mRNA levels significantly decreased in comparison with the control CHF mice. These results show that, during adulthood, hypothalamic neuropeptide systems are altered (NPY) and/or abnormally respond to a high-fat diet (NPY, AgRP, GAL and GalP) in mice overfed during critical developmental periods. 相似文献
9.
Sayeed Mohammed Firdous Sayan Hazra Subash C.B. Gopinath Gaber E. El-Desouky Mourad A.M. Aboul-Soud 《Saudi Journal of Biological Sciences》2021,28(1):109-115
The aim of this study was to investigate the antihyperlipidemic potential of Diosmin (DS) in mice fed with a high-fat diet (HFD). Animals were divided in five groups (n = 6). The total duration of the study was 90 days split into two intervals. During the first 45-day interval, mice were administered with HFD, whereas during the second 45-day interval they were co-administered HFD plus DS or the standard drug atorvastatin. DS was administered at the dose of 100 and 200 mg/kg;p.o. DS treatment to HFD-induced hyperlipidemic mice caused significant decrements in the levels of total cholesterol, triglycerides, LDL-C and VLDL-C. Moreover, DS resulted in significant increase in the levels of HDL-C and improvements in total protein levels, whereas it caused remarkable decreases in SGOT, SGPT and ALP enzymatic activities in hyperlipidemic mice. Histopathological examination of hyperlipidemic mice revealed a disorganized hepatic tissue, fatty changes, and mononuclear cell infiltration, which were all ameliorated by DS administration. The results revealed that DS possesses potential ameliorating benefits again.st hyperlipidemia induced by HFD on lipid profile, liver function enzymes and hepatic histoarchitecture. Further investigations are highly recommended and clinical trials are warranted in order to assess the efficacy and to fully dissect the mode-of-action underpinning the observed antihyperlipidemic effect of DS. 相似文献
10.
Huijing Liang Fengling Jiang Ruyue Cheng Yating Luo Jiani Wang Zihao Luo Ming Li Xi Shen Fang He 《Experimental Animals》2021,70(1):73
This study was conducted to investigate the effects of a high-fat diet (HFD) and high-fat and high-cholesterol diet (HFHCD) on glucose and lipid metabolism and on the intestinal microbiota of the host animal. A total of 30 four-week-old female C57BL/6 mice were randomly divided into three groups (n=10) and fed with a normal diet (ND), HFD, or HFHCD for 12 weeks, respectively. The HFD significantly increased body weight and visceral adipose accumulation and partly lowered oral glucose tolerance compared with the ND and HFHCD. The HFHCD increased liver weight, liver fat infiltration, liver triglycerides, and liver total cholesterol compared with the ND and HFD. Moreover, it increased serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol compared with the ND and HFD and upregulated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase significantly. The HFHCD also significantly decreased the α-diversity of the fecal bacteria of the mice, to a greater extent than the HFD. The composition of fecal bacteria among the three groups was apparently different. Compared with the HFHCD-fed mice, the HFD-fed mice had more Oscillospira, Odoribacter, Bacteroides, and [Prevotella], but less [Ruminococcus] and Akkermansia. Cecal short-chain fatty acids were significantly decreased after the mice were fed the HFD or HFHCD for 12 weeks. Our findings indicate that an HFD and HFHCD can alter the glucose and lipid metabolism of the host animal differentially; modifications of intestinal microbiota and their metabolites may be an important underlying mechanism. 相似文献
11.
Rinella ME Elias MS Smolak RR Fu T Borensztajn J Green RM 《Journal of lipid research》2008,49(5):1068-1076
The methionine choline-deficient (MCD) diet results in liver injury similar to human nonalcoholic steatohepatitis (NASH). The aims of this study were to define mechanisms of MCD-induced steatosis in insulin-resistant db/db and insulin-sensitive db/m mice. MCD-fed db/db mice developed more hepatic steatosis and retained more insulin resistance than MCD-fed db/m mice. Both subcutaneous and gonadal fat were reduced by MCD feeding: gonadal fat decreased by 23% in db/db mice and by 90% in db/m mice. Weight loss was attenuated in the db/db mice, being only 13% compared with 35% in MCD-fed db/db and db/m mice, respectively. Both strains had upregulation of hepatic fatty acid transport proteins as well as increased hepatic uptake of [14C]oleic acid: 3-fold in db/m mice (P < 0.001) and 2-fold in db/db mice (P < 0.01) after 4 weeks of MCD feeding. In both murine strains, the MCD diet reduced triglyceride secretion and downregulated genes involved in triglyceride synthesis. Therefore, increased fatty acid uptake and decreased VLDL secretion represent two important mechanisms by which the MCD diet promotes intrahepatic lipid accumulation in this model. Feeding the MCD diet to diabetic rodents broadens the applicability of this model for the study of human NASH. 相似文献
12.
Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice 总被引:3,自引:0,他引:3
Oishi K Atsumi G Sugiyama S Kodomari I Kasamatsu M Machida K Ishida N 《FEBS letters》2006,580(1):127-130
The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice. We also found that dietary fat absorption was extremely impaired in Clock mutant mice. Circadian expressions of cholecystokinin-A (CCK-A) receptor and lipase mRNAs were damped in the pancreas of Clock mutant mice. We therefore showed that a Clock mutation attenuates obesity induced by a high-fat diet in mice with an ICR background through impaired dietary fat absorption. Our results suggest that circadian clock molecules play an important role in lipid homeostasis in mammals. 相似文献
13.
Femke P. M. Hoevenaars Jaap Keijer Laure Herreman Inge Palm Maria A. Hegeman Hans J. M. Swarts Evert M. van Schothorst 《Genes & nutrition》2014,9(3)
Restriction of a high-fat diet (HFD) and a change to a low-fat diet (LFD) are two interventions that were shown to promote weight loss and improve parameters of metabolic health in obesity. Examination of the biochemical and molecular responses of white adipose tissue (WAT) to these interventions has not been performed so far. Here, male C57BL/6JOlaHsd mice, harboring an intact nicotinamide nucleotide transhydrogenase gene, were fed a purified 40 energy% HFD for 14 weeks to induce obesity. Afterward, mice were divided into three dietary groups: HFD (maintained on HFD), LFD (changed to LFD with identical ingredients), and HFD-CR (restricted to 70 % of the HFD). The effects of the interventions were examined after 5 weeks. Beneficial effects were seen for both HFD-CR and LFD (compared to HFD) regarding physiological parameters (body weight and fat mass) and metabolic parameters, including circulating insulin and leptin levels. Macrophage infiltration in WAT was reduced by both interventions, although more effectively by HFD-CR. Strikingly, molecular parameters in WAT differed between HFD-CR and LFD, with increased activation of mitochondrial carbohydrate and fat metabolism in HFD-CR mice. Our results confirm that restriction of the amount of dietary intake and reduction in the dietary energy content are both effective in inducing weight loss. The larger decrease in WAT inflammation and increase in mitochondrial carbohydrate metabolism may be due to a larger degree of energy restriction in HFD-CR, but could also be due to superior effectiveness of dietary restriction in weight loss strategies.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-014-0391-9) contains supplementary material, which is available to authorized users. 相似文献14.
Yazdi M Ahnmark A William-Olsson L Snaith M Turner N Osla F Wedin M Asztély AK Elmgren A Bohlooly-Y M Schreyer S Lindén D 《Biochemical and biophysical research communications》2008,369(4):1065-1070
Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the in vivo importance of the dominating mitochondrial variant, GPAT1, a novel GPAT1−/− mouse model was generated and studied. Female GPAT1−/− mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore, GPAT1−/− females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when GPAT1−/− females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male GPAT1−/− mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance. 相似文献
15.
16.
Haoran Yang Qingmei Deng Tun Ni Yu liu Li Lu Haiming Dai Hongzhi Wang Wulin Yang 《International journal of biological sciences》2021,17(15):4207
Rationale: Nonalcoholic steatohepatitis (NASH), as one of the key stages in the development of nonalcoholic fatty liver disease (NAFLD), can directly progress to HCC, but the underlying mechanism is not fully understood.Methods: Differentially expressed genes (DEGs) in each stage of disease development were studied through a GEO dataset deriving from a Stelic Animal Model (STAM), which can simulate the evolution of NAFLD/NASH to HCC in humans. GSVA analysis was performed to analyze the differentially expressed oncogenic signatures in each stage. A human NAFLD-related dataset from GEO database was utilized for gene expression verification and further validated in the protein level in STAM mice. Small molecule inhibitors were applied to STAM mice for investigating whether inhibition of the LPL/FABP4/CPT1 axis could prevent the occurrence of NASH-related HCC in vivo. Microsphere formation and clonal formation assays in vitro were applied to study if inhibition of the LPL/FABP4/CPT1 axis can reduce the viability of liver cancer stem cells (LCSCs).Results: We found that upregulation of the LPL/FABP4/CPT1 molecular axis, as a fatty acid metabolic reprogramming process, occurred specifically during the NASH phase. GSVA analysis showed widespread activation of a large number of oncogenic signals, which may contribute to malignant transformation during NASH. Furthermore, inhibition of the LPL/FABP4/CPT1 axis could effectively delay the tumor growth in STAM mice. Cell assays revealed inhibitors targeting this axis can significantly reduce the sphere-forming, proliferation, and clonality of LCSCs.Conclusion: These results suggest that activation of the LPL/FABP4/CPT1 axis is essential for LCSCs maintenance, which acts synergistically with a variety of up-regulated oncogenic signals that drive the hepatocyte-LCSCs transdifferentiation during NASH to HCC progression. Thus, targeting the LPL/FABP4/CPT1 axis may provide a potential direction for NASH-related HCC prevention. 相似文献
17.
de Haan JB Witting PK Stefanovic N Pete J Daskalakis M Kola I Stocker R Smolich JJ 《Journal of lipid research》2006,47(6):1157-1167
Oxidative stress is thought to contribute to the initiation and progression of atherosclerosis. As glutathione peroxidase-1 (Gpx1) is an antioxidant enzyme that detoxifies lipid hydroperoxides, we tested the impact of Gpx1 deficiency on atherosclerotic processes and antioxidant enzyme expression in mice fed a high-fat diet (HFD). After 12 weeks of HFD, atherosclerotic lesions at the aortic sinus were of similar size in control and Gpx1-deficient mice. However, after 20 weeks of HFD, lesion size increased further in control but not in Gpx1-deficient mice, even though plasma and aortic wall markers of oxidative damage did not differ between groups. In control mice, the expression of Gpx1 increased and that of Gpx3 decreased at the aortic sinus after 20 weeks of HFD, with no change in the expression of Gpx2, Gpx4, catalase, peroxiredoxin-6, glutaredoxin-1 and -2, or thioredoxin-1 and -2. By comparison, in Gpx1-deficient mice, the expression of antioxidant genes was unaltered except for a decrease in glutaredoxin-1 and an increase in glutaredoxin-2. These changes were associated with increased expression of the proinflammatory marker monocyte chemoattractant protein-1 in control mice but not in Gpx1-deficient mice. In summary, a specific deficiency in Gpx1 was not accompanied by an increase in markers of oxidative damage or increased atherosclerosis in a murine model of HFD-induced atherogenesis. 相似文献
18.
Joao A. G. Duarte Filipa Carvalho Mackenzie Pearson Jay D. Horton Jeffrey D. Browning John G. Jones Shawn C. Burgess 《Journal of lipid research》2014,55(12):2541-2553
Intracellular lipids and their synthesis contribute to the mechanisms and complications of obesity-associated diseases. We describe an NMR approach that provides an abbreviated lipidomic analysis with concurrent lipid biosynthetic fluxes. Following deuterated water administration, positional isotopomer analysis by deuterium NMR of specific lipid species was used to examine flux through de novo lipogenesis (DNL), FA elongation, desaturation, and TG-glycerol synthesis. The NMR method obviated certain assumptions regarding sites of enrichment and exchangeable hydrogens required by mass isotope methods. The approach was responsive to genetic and pharmacological gain or loss of function of DNL, elongation, desaturation, and glyceride synthesis. BDF1 mice consuming a high-fat diet (HFD) or matched low-fat diet for 35 weeks were examined across feeding periods to determine how flux through these pathways contributes to diet induced fatty liver and obesity. HFD mice had increased rates of FA elongation and glyceride synthesis. However DNL was markedly suppressed despite insulin resistance and obesity. We conclude that most hepatic TGs in the liver of HFD mice were formed from the reesterification of existing or ingested lipids, not DNL. 相似文献
19.
Della-Fera MA Li C Baile CA 《Biochemical and biophysical research communications》2003,303(4):1053-1057
The objectives of this experiment were to determine whether leptin causes adipocyte apoptosis in mice, whether peripheral administration is an effective means of studying leptin-induced adipocyte apoptosis, and whether high-fat feeding results in reduced responsiveness to leptin-induced adipocyte apoptosis. Continuous 13-day intraperitoneal infusion of 10 microg/day leptin significantly increased adipocyte apoptosis in the epididymal/parametrial fat pads of male and female mice, but only male mice developed reduced responsiveness to leptin-induced adipocyte apoptosis after high-fat (45% fat) feeding for 5 or 15 weeks. There was a positive correlation between serum leptin concentration and percent apoptotic adipocytes. These findings demonstrate that leptin administered peripherally is effective in inducing adipocyte apoptosis in mice, thus extending the possibility of studying this effect of leptin in a wider variety of animal models. In addition, high-fat feeding has a gender-specific effect on development of reduced responsiveness to leptin-induced adipocyte apoptosis. 相似文献