首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
1. Lobster muscles contain a latent multicatalytic proteinase; heating at 60 degrees C for 1-2 min converts the latent form to a heat-activated form with enhanced proteolytic activity. Both forms have three endopeptidase activities, which are classified as the trypsin-like, chymotrypsin-like, and peptidylglutamylpeptide bond hydrolyzing activities. 2. Sulfhydryl reagents (mersalyl acid, N-ethylmaleimide, hemin, iodoacetamide, and p-chloromercurisulfonic acid), benzamidine, and chloromethyl ketones inhibited all three activities of the heat-activated form. Leupeptin and antipain inhibited only the trypsin-like activity, while the chymotrypsin-like activity was the most sensitive to diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, aprotinin, and soybean trypsin inhibitor. Pepstatin and L-trans-epoxysuccinylpeptides had little effect on the peptidase activities. 3. Sodium dodecyl sulfate and oleic acid preferentially activated the peptidylglutamyl-peptide hydrolyzing activity of the latent form, whereas N-ethylmaleimide stimulated both the trypsin-like and peptidylglutamyl-peptide hydrolases. These results suggest that the lobster enzyme is an atypical serine proteinase.  相似文献   

2.
A multicatalytic proteinase (MCP) purified from lobster claw and abdominal muscles degrades a variety of peptide and protein substrates. The enzyme is activated by low concentrations (0.03%) of sodium dodecyl sulfate (SDS) and brief (1 min) heating at 60 degrees C. The lobster MCP can assume three stable and functionally distinct states in vitro; these are classified as the basal, heat-activated, and SDS-activated forms. The basal MCP possessed high trypsin-like peptidase activity and low chymotrypsin-like peptidase, peptidylglutamyl-peptide hydrolase, and caseinolytic activities; incubation of the basal form with SDS stimulated the peptidylglutamyl-hydrolase activity about 30-fold and inhibited the other three activities 80% to 100%. Heating the basal form stimulated caseinolytic activity about 6-fold with little effect on the peptidase activities. The heat-activated enzyme also degraded myosin, tropomyosin, troponin, and actin depolymerizing factor; alpha-actinin was resistant to proteolysis. Incubation of the heat-activated MCP with SDS inhibited the trypsin-like, chymotrypsin-like, and proteinase activities 95 to 100% and stimulated the peptidylglutamyl-hydrolase activity about 16-fold. Incubation of myosin with either the basal or the heat-activated forms in the presence of SDS generated identical proteolytic fragments of the myosin heavy chain, suggesting that SDS induced a third form that can be produced from either the basal or the heat-activated forms. The heat-activated form produced proteolytic fragments of myosin heavy chain different from those generated by either basal or heat-activated enzymes in the presence of SDS. Furthermore, 100 mM KCl stimulated the caseinolytic activity of the heat-activated form 24% and inhibited the trypsin-like and peptidylglutamyl-hydrolase activities 56 and 20%, respectively. These results, though indirect, suggest that heating induced a proteinase activity that was distinct from the three peptidase activities. Activation of the basal form with SDS was reversible, since precipitation of dodecyl sulfate with 100 mM KCl restored trypsin-like activity and inhibited peptidylglutamyl-hydrolase activity. In contrast, removal of dodecyl sulfate from the SDS-activated form that was derived from the heat-activated MCP induced its conversion to the basal form. Thus, although heat-activation was irreversible, the heat-activated form was converted back to the basal form via the SDS-activated form.  相似文献   

3.
A high molecular mass alkaline proteinase was purified by DEAE-Sepharose and Mono Q chromatography. The mol. wt was estimated to be about 600,000. Under denaturing conditions, the enzyme dissociated into a cluster of subunits with mol. wt ranging from 25,000 to 30,000. The isoelectric point of the enzyme was about pH 7.3. The proteinase was able to hydrolyse N-terminal-blocked 4-methyl-7-coumarylamide substrates for either trypsin- or chymotrypsin-like activity. It was also able to hydrolyse haemoglobin and myosin at temperatures of about 60°C. The activities responded to pH and some chemicals in different ways. The trypsin-like activity was clearly inhibited by several serine protease inhibitors. These results suggest that the enzyme is multicatalytic, having at least two different active sites.  相似文献   

4.
1. A latent form of multicatalytic proteinase (MCP) was purified to apparent homogeneity from white croaker muscle by DEAE-Sephacel, Mono-Q, Sephacryl S-300 and second Mono-Q chromatographies. 2. The enzyme preparation was electrophoretically and immunologically similar to MCP purified from the same source by a different method (Folco et al., 1988b, Archs Biochem. Biophys. 267, 599-605) but showed much lower chymotrypsin- and trypsin-like activities. 3. These activities responded to sodium dodecyl sulphate (SDS), urea and heat treatments in different ways: SDS stimulated both activities, urea stimulated the former and inhibited the latter and heating stimulated the former and did not affect the latter. 4. The stimulation of chymotrypsin-like activity by the three treatments was irreversible. 5. Exposure of MCP to SDS or urea in the absence of substrate rapidly inactivated it, whereas heat activation took place irrespective of the presence of substrate. 6. The stimulating effect of SDS on chymotrypsin-like activity was lost in the presence of urea. 7. These results suggest that the enzyme may be activated by different mechanisms.  相似文献   

5.
A partially active and a latent form of multicatalytic protease (MCP) were isolated from fish skeletal muscle. Both forms were inactive against protein substrates, but their activity against peptide substrates differed in one order of magnitude. The chymotrypsin-like activity of the partially active form was moderately stimulated by fatty acids and SDS, whereas its trypsin-like activity was inhibited by the same reagents. In contrast, both activities of the latent form were strongly stimulated by SDS. The chymotrypsin-like activity of the latent form was also stimulated by heating or high urea concentrations, whereas its trypsin-like activity did not change or was inhibited respectively by these treatments. These activation effects were irreversible. Pre-treatment of the latent form with SDS or urea in the absence of substrate led to its irreversible inactivation, whereas activation by pre-heating occurred in the presence or absence of substrate. These results suggest that MCP can exist in several active states with distinct properties. Studies on the distribution of MCP in fish tissues showed a much higher level of the enzyme in gonads than in any other tissue, suggesting a role of MCP in development.Abbreviations MCP multicatalytic proteinase - Suc succinyl - Bz benzoyl - Z carbobenzoxy - NMec 4-methyl-7-coumarylamide - CTAB cetyl trimethylammonium bromide  相似文献   

6.
The breakdown of beta-casein (caseinolytic activity) by the bovine pituitary multicatalytic proteinase complex (MPC) is initiated by a fourth active site different from the previously described chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide, where Cbz is benzyloxycarbonyl), trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide), and peptidylglutamyl peptide bond-hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) (Yu, B., Pereira, M. E., and Wilk, S. (1991) J. Biol. Chem. 266, 17396-17400). 3,4-Dichloroisocoumarin, a serine proteinase inhibitor, stimulated the caseinolytic activity of bovine pituitary or lens MPC, 3-18-fold under conditions under which the other three catalytic activities were inactivated. Addition of hydroxylamine to the modified enzyme did not reverse the effects of the inhibitor. A form of the proteinase exhibiting only 2-4% of control chymotrypsin-like, trypsin-like, and PGP activities degraded beta-casein with no accumulation of intermediate peptides. 3,4-Dichloroisocoumarin, by reacting with the chymotrypsin-like, trypsin-like, and/or PGP-active sites, may promote a conformational change of MPC, rendering the caseinolytic active site accessible to the substrate. Once bound to the active site, beta-casein is rapidly degraded either by the caseinolytic component itself or by a cooperative interaction with catalytic centers that are not affected by the serine proteinase inhibitor. These results imply that the caseinolytic component does not belong to the class of serine proteinases. Other proteins tested were not degraded by the 3,4-dichloroisocoumarin-treated enzyme, suggesting that the conformation of beta-casein may be more adequate for degradation by the caseinolytic component.  相似文献   

7.
The effect of N-acetylimidazole, a mild acetylating reagent, on the catalytic activities and subunit structure of the bovine pituitary multicatalytic proteinase complex (MPC) was studied. The trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide) and the peptidylglutamyl-peptide bond hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) of MPC were rapidly inactivated by N-acetylimidazole, whereas the chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide) was inactivated slowly. However, the hydrolysis of casein was markedly stimulated. Hydrolysis of casein by the acetylated enzyme generated a stable intermediate (21 kDa) which could be further degraded by native MPC. Treatment of acetylated MPC with hydroxylamine reversed the changes in trypsin-like and caseinolytic activities but did not restore the PGP activity. N-Acetylimidazole did not dissociate MPC but altered its migration on nondissociating gels presumably by acetylation of epsilon-amino groups of lysine residues. Hydroxylamine did not alter the gel electrophoretic appearance of the acetylated enzyme. These results indicate that acetylation of thiol or tyrosyl groups changes the trypsin-like and caseinolytic activities, and that amino group acetylation inhibits the PGP activity. Degradation of casein by MPC appears to be a sequential process with initial cleavage catalyzed by a component distinct from the chymotrypsin-like, trypsin-like, and PGP activities. The latter three components likely participate in the secondary proteolysis of the generated intermediates.  相似文献   

8.
The multicatalytic proteinase. Multiple proteolytic activities   总被引:9,自引:0,他引:9  
The multicatalytic proteinase is a high molecular weight nonlysosomal proteinase which has been isolated from a variety of mammalian tissues and has been suggested to contain several distinct catalytic sites. The enzyme degrades protein and peptide substrates and can cleave bonds on the carboxyl side of basic, hydrophobic, and acidic amino acid residues. The three types of activity have been referred to as trypsin-like, chymotrypsin-like, and peptidyl-glutamyl peptide bond hydrolyzing activities, respectively. All of these proteolytic activities are associated with a single band on native polyacrylamide gels. The pH optimum of the proteinase (pH 7.5-9.5) depends on the substrate. Using synthetic peptide substrates it was possible to demonstrate two distinct activities. Trypsin-like activity is inhibited at concentrations of the peptide aldehyde inhibitors leupeptin and antipain or of N-ethylmaleimide which have little or no effect on chymotrypsin-like activity. Results of mixed-substrate experiments also suggest that there are at least two distinct types of catalytic sites. All proteolytic activity is lost following dissociation by urea or by acid treatment. Polyclonal antibodies raised against the intact multicatalytic proteinase precipitate the complex but have little effect on its proteolytic activities.  相似文献   

9.
王琛柱  项秀芬 《昆虫学报》1995,38(3):272-277
本研究根据棉铃虫Helicotverpa ormigera(Hubner)幼虫中肠蛋白酶在离体条件下对蛋白酶抑制剂的反应,选择具有较强抑制作用的大豆胰蛋白酶抑制剂,以0.21-4.2%(干重)的浓度配入幼虫人工饲料,测定了幼虫短期和长期取食这些饲料引起的中肠类胰蛋白酶、类胰凝乳蛋白酶和总蛋白酶活力的变化和生长抑制效应。短期取食抑制剂的幼虫,中肠弱碱性类胰蛋白酶活力显著增高,在4.2%。浓度下比对照高出21%;强碱性类胰蛋白酶、类胰凝乳蛋白酶和总蛋白酶活力显著降低,生长发育受到明显抑制。长期取食低浓度(0.84%)抑制剂的幼虫,弱碱性类胰蛋白酶和类胰凝乳蛋白酶活力显著增高,强碱性类胰蛋白酶活力显著降低。总蛋白酶活力变化不显著;长期取食高浓度(4.2%)抑制剂的幼虫,强碱性类胰蛋白酶和总蛋白酶活力显著降低,其它酶活力变化不显著。抑制剂随浓度的增高对幼虫生长的抑制作用加强,但浓度高于0.84%后,抑制强度的变化减小。据此作者认为,蛋白酶抑制剂对昆虫抗营养效应在于它对蛋白酶的激活和抑制作用,从而导致各种蛋白酶间的协调性破坏,昆虫消化过程受阻,影响生长发育。  相似文献   

10.
Serine class proteinases with trypsin-like and chymotrypsin-like specificity were purified from dog mastocytoma tissue. An antiserum was produced against the chymotrypsin-like proteinase. The antiserum reacted with mast cells in skin sections prepared from normal dogs consistent with the proteinase being a mast cell constituent. The antiserum also cross-reacted with the major chymotrypsin-like proteinase isolated from normal dog skin and partially cross-reacted with human skin chymase. No cross-reaction was detected with rat chymase. The trypsin-like proteinase from dog mastocytoma tissue was similar to tryptase isolated from human skin. It had a similar subunit structure, was not inhibited by many protein proteolytic enzyme inhibitors, bound to heparin, and reacted strongly with antiserum against human tryptase. Antiserum against human tryptase also reacted with mast cells in skin sections prepared from normal dog skin. No immunocytochemical labeling of rat skin mast cells was observed with anti-human tryptase. These studies establish the presence of a trypsin-like and chymotrypsin-like proteinase in dog skin mast cells and provide immunological evidence which suggests that both proteinases are more closely related to human than rat mast cell proteinases. These immunological and biochemical relationships are important when comparing the roles of these proteinases in different animals.  相似文献   

11.
A multicatalytic (high-molecular-weight) proteinase has been purified from eggs of the ascidian Halocynthia roretzi by a procedure including column chromatographies on DEAE-cellulose and hydroxylapatite and gel filtration on Sepharose 6B. The purified enzyme seemed to be homogeneous, as judged by disc-polyacrylamide gel electrophoresis, isoelectrofocusing, sedimentation velocity, and gel filtration. The molecular weight of the enzyme was estimated to be 610,000 by gel filtration. The isoelectric point and the sedimentation coefficient (S20,w) were 6.2 and 22.8S, respectively. The enzyme showed several protein bands with molecular weight ranging from 25,000 to 33,000 on SDS-polyacrylamide gel electrophoresis and a cylindrical or ring-like structure composed of several subunits under the electron microscope, indicating that the enzyme exists as a large molecule consisting of several protein components. The enzyme exhibited chymotrypsin-like and trypsin-like activities whose pH optima were both 7.0. Chymostatin and its analog, calpain inhibitor I, and elastatinal inhibited both activities, whereas leupeptin and antipain only inhibited the latter. The former activity was stimulated by a low concentration of SDS or fatty acid, whereas the latter was not. Thus, the properties of the enzyme purified from ascidian eggs are similar to those of multicatalytic proteinases from mammalian tissues.  相似文献   

12.
The 20S proteasome was purified from oocytes of the starfish Asterina pectinifera and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.  相似文献   

13.
Proteinase I, an enzyme previously shown to be able to degrade contractile and cytoskeletal elements of white-croaker (Micropogon opercularis) myofibrils, was purified to apparent homogeneity by chromatography on DEAE-Sephacel, octyl-Sepharose CL 4B and arginine-Sepharose 4B. Its Mr was determined to be 269,000 by Sephacryl S-300 gel filtration. Under denaturing conditions, the enzyme dissociated into two subunits with Mr 20,000 and 15,500, in a molar ratio of 1.8:1. Proteinase I showed a pH optimum of 8.5. The enzyme was strongly inhibited by several serine proteinase inhibitors, whereas inhibitors of the other types of proteinases did not affect, or only scarcely affected, its activity. Several N-terminal-blocked 4-methyl-7-coumarylamide substrates having either arginine or lysine residues adjacent to the fluorogenic group were efficiently hydrolysed by the enzyme. These results indicate that proteinase I is a trypsin-like serine proteinase. The enzyme appears to be distinct from other proteinases previously described in skeletal muscle, and might be involved in the catabolism of myofibrillar proteins.  相似文献   

14.
The multicatalytic proteinase complex (MPC), also referred to as proteasome, is a large molecular mass intracellular particle (approximately 700 kDa), which exhibits three distinct proteolytic activities designated as chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolyzing (PGPH), all sensitive to inhibition by 3,4-dichloroisocoumarin (DCI). The presence of a component resistant to inhibition by DCI with an apparent preference toward bonds on the carboxyl side of branched-chain amino acids has also been recently established. Peptide aldehydes and peptide alpha-keto esters containing a hydrophobic residue in the P1 position have been tested as potential inhibitors of the chymotrypsin-like activity. Three peptide aldehydes (benzyloxycarbonyl)-Leu-Leu-phenylalaninal (Z-LLF-CHO), N-acetyl-Leu-Leu-norleucinal (Ac-LLnL-CHO), and N-acetyl-Leu-Leu-methioninal (Ac-LLM-CHO) were found to be slow-binding reversible inhibitors with Ki values of 0.46, 5.7, and 33 microM, respectively. The simplest kinetic model for inhibition is consistent with a mechanism involving a slow and reversible association of the enzyme with the inhibitor to form a EI complex. The aldehyde inhibitors also inhibited the trypsin-like and PGPH activities of the complex albeit with much higher Ki values than those for chymotrypsin-like activity. Z-LLF-CHO, the most selective of the three aldehydes, did not inhibit the PGPH activity at concentrations of up to 200 microM and inhibited the trypsin-like activity with a Ki approximately 2 orders of magnitude higher than that for the chymotrypsin-like activity. The activity of the DCI-resistant component was not affected by Z-LLF-CHO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶活性的影响   总被引:1,自引:0,他引:1  
为明确蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶活性的影响,采用室内人工接虫和生化测定的方法,研究了在离体条件和饲喂条件下4种蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶的抑制作用,并测定了绿豆象幼虫取食不同含量的绿豆胰蛋白酶抑制剂(MBTI)的人工绿豆后,其中肠内总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性的变化.结果表明:在离体条件下,供试4种蛋白酶抑制剂对绿豆象幼虫总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性均有明显的抑制作用,且浓度越大,抑制效果越显著,其中以20μg·mL-1的MBTI对3种酶活性的抑制效果最强,3种酶活性分别比对照降低了62.5%、41.2%和38.7%,而卵粘蛋白抑制剂(OI)抑制效果最弱.绿豆象幼虫取食含不同抑制剂的人工绿豆后,中肠内3种酶活性也均受到一定的抑制作用,取食后随龄期的延长,3种酶活性有所升高但仍显著低于对照,且以MBTI的抑制作用最强.当绿豆象幼虫取食不同含量MBTI的人工绿豆后,随MBTI含量的增加,对总蛋白酶活性和类胰蛋白酶活性的抑制作用均逐渐增强,但对类胰凝乳蛋白酶活性的抑制作用并不显著,只有当MBTI含量达20%时,对类胰凝乳蛋白酶活性才表现出明显的抑制作用.  相似文献   

16.
Proteolytic activities in soluble protein extracts from Mamestra brassicae (cabbage moth) larval midgut were analysed using specific peptide substrates and proteinase inhibitors. Serine proteinases were the major activities detected, with chymotrypsin-like and trypsin-like activities being responsible for approximately 62% and 19% of the total proteolytic activity towards a non-specific protein substrate. Only small amounts of elastase-like activities could be detected. The serine proteinases were active across the pH range 7-12.5, with both trypsin-like and chymotrypsin-like activities maximal at pH 11.5. The digestive proteinases were stable to the alkaline environment of the lepidopteran gut over the timescale of passage of food through the gut, with 50% of trypsin and 40% of chymotrypsin activity remaining after 6h at pH 12, 37 degrees C. Soybean Kunitz trypsin inhibitor (SKTI) ingestion by the larvae had a growth-inhibitory effect, and induced inhibitor-insensitive trypsin-like activity. Qualitative and quantitative changes in proteinase activity bands after gel electrophoresis of gut extracts were evident in SKTI-fed larvae when compared with controls, with increases in levels of most bands, appearance of new bands, and a decrease in the major proteinase band present in extracts from control insects.  相似文献   

17.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:25,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

18.
为明确Cry2Ab和Cry1Ac2种Bt杀虫蛋白单用与混用对棉铃虫Helicoverpa armigera(Htibner)中肠主要蛋白酶活性的影响,本文测定了取食含不同Bt蛋白人工饲料后棉铃虫中肠总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性的差异。结果发现:Cry2Ab处理12h后对棉铃虫中肠总蛋白酶影响不大;对类胰蛋白酶的影响最大,除最高浓度处理外,其他浓度处理后棉铃虫类胰蛋白酶的活性明显高于对照;但对类胰凝乳蛋白酶活性的影响呈倒“V”字型,只有6.67ug/gCry2Ab处理后的棉铃虫酶活力显著高于对照,其他浓度处理与对照差异不显著或略低于对照;随着取食含Cry2Ab饲料时间的增加,棉铃虫中肠类胰蛋白酶和类胰凝乳蛋白酶的活性比对照显著增加;与对照相比,处理36h后类胰蛋白酶活性最高可增加到6.43倍。Cry1Ac处理棉铃虫12h后总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性都明显增加,而且与处理浓度呈正相关;但是24h后,处理后棉铃虫的总蛋白酶和类胰凝乳蛋白酶活性明显降低,只有类胰蛋白酶活性仍高于对照,但活性增长倍数低于12h时的处理。Cru2Ab和Cry1Ac2种蛋白混用处理棉铃虫后,2种酶的酶活力基本低于Cry1Ac和Cry2Ab单用的酶活力之和;只有2种蛋白浓度均为2.22ug/g混用时,处理12h后类胰蛋白酶和类胰凝乳蛋白酶的活性高于2种蛋白单用时酶活力之和,且都显著的高于对照。  相似文献   

19.
Characterization of proteinases from Antarctic krill (Euphausia superba)   总被引:3,自引:0,他引:3  
Fractions of three trypsin-like proteinases, TL I, TL II, and TL III, a chymotrypsin-like proteinase, CL, two carboxypeptidase A enzymes, CPA I and CPA II and two carboxypeptidase B enzymes, CPB I and CPB II, from Antarctic krill (Euphausia superba) have been characterized with respect to purity by the means of capillary electrophoresis, CE, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The masses of the trypsin-like and chymotrypsin-like proteinases were determined to be 25,020, 25,070, 25,060, and 26,260Da for TL I, TL II, TL III, and CL, respectively. The masses of the CPA enzymes are likely 23,170 and 23,260Da, whereas the CPB enzyme masses likely are 33,730 and 33,900Da. The degradation efficiency and cleavage pattern of the trypsin-like proteinases were studied with native myoglobin as a model substrate using CE, MALDI-TOF-MS, and nanoelectrospray mass spectrometry (nESI-MS). The degradation efficiency of the trypsin-like proteinases was found to be approximately 12 and 60 times higher compared to bovine trypsin at 37 degrees C and 1-3 degrees C, respectively. All three fractions of trypsin-like proteinases showed a carboxypeptidase activity in combination with their trypsin activity.  相似文献   

20.
1. A serine proteinase isolated from E. superba shows collagenolytic properties: it acts on collagens from Achilles tendon (type I and V) and reconstituted fibrils of calf skin collagen under conditions that do not denature the substrates. 2. At 25 degrees C and pH 7.5 the enzyme both splits the calf skin collagen in solution to the fragments TCA and TCB and catalyses the conversion of dimeric molecules to monomeric chains. 3. The enzyme exhibits strong chymotrypsin-like and lower trypsin-like activities. 4. All the enzyme activities are inhibited to the same degree by diisopropylfluorophosphate (DFP), phenylmethylsulphonyl fluoride (PMSF), N alpha-tosyl-L-lysine chloromethyl ketone (TLCK), soybean trypsin inhibitor (SBTI), chicken ovomucoid (CHOM), chymostatin and leupeptin. None of the activities is inhibited by chelating agents and L-cysteine. 5. pH-Optima of the proteinase in protein substrates hydrolysis (6.0-6.2) are lower than those of synthetic substrates cleavage (7.8-8.0 in the case of BzTyrOEt and 8.7-8.9 for BzArgOEt). 6. Four from nine cysteine residues present in the enzyme molecule possess free thiol-groups. Since the enzyme is inhibited by p-chloromercuribenzoate (pCMB), N-ethylmaleimide (NEM) and iodoacetic acid (IAA), the role of its thiol-groups has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号