共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of field methods for measuring soil carbon dioxide evolution: Experiments and simulation 总被引:7,自引:0,他引:7
Three widely used methods for measuring total soil CO2 evolution are evaluated, including the dynamic CO2 absorption method, the static CO2 absorption method and the closed chamber method. The study covers laboratory experiments. numerical experiments with a simulation model and field measurements. The results are used to perform an error analysis. The aim of this error analysis is to indicate the impact of each method on the CO2 dynamics during the measurement, and to select the most suitable method for frequent field usage.Laboratory experiments and simulation results show that the dynamic CO2 absorption method has the potential to absorb all CO2 evolving at the soil surface. The results also prove that the method has only a minor impact on the CO2 concentration-depth gradient and the CO2 efflux. The static CO2 absorption method underestimates the soil CO2 evolution, because the absorption velocity is too low, due to slow diffusion processes. Measurements with the closed-chamber method are based on an increasing concentration with time under a closed cover. However, the accumulation of gas alters the concentration gradient in the soil profile and thus causes a rapidly decreasing efflux during the measurement. A commonly used mathematical procedure, which corrects for the altered concentration gradient, does not yield the exact surface efflux, because the effect of increasing storage in the soil profile is not incorporated. Field measurements of CO2 evolution, using the closed-chamber method and the dynamic CO2 absorption method confirm the trends that have been predicted by the simulation model. The results of this study indicate that the dynamic CO2 absorption method is accurate. As it is cheap and simple, it is suitable for the study of temporal and spatial dynamics of CO2 evolution from the soil. 相似文献
2.
Shigeru Mariko Noboru Nishimura Wenhong Mo Yoshisuke Matsui Takeshi Kibe Hiroshi Koizumi 《Ecological Research》2000,15(4):363-372
We measured diurnal and wintertime changes in CO2 fluxes from soil and snow surfaces in a Japanese cool-temperate Quercus/Betula forest between December 1994 and May 1995. To evaluate the relationship between these winter fluxes and temperature, flux measurements were made with the open-flow infrared gas analyzer (IRGA) method rather than with the more commonly used closed chamber method or the snow CO2 profile method. The open-flow IRGA method proved to be more successful in measurements of winter CO2 fluxes than the two standard methods. Despite colder air temperatures, soil temperature profiles were greater than 0°C because of the thermal insulation effect of deep snowpack. This reveals that soil temperature is satisfactory for microbial respiration throughout the winter. Unfrozen soils under the snowpack showed neither diurnal nor wintertime trends in CO2 fluxes or in soil surface temperature, although there was a daily snow surface CO2 flux of 0.18–0.32 g m–2. By combining this with other reference data, Japanese cool-temperate forest soils in snowy regions can be estimated to emit < 100 g m–2 carbon over an entire winter, and this value accounts for < 15% of the annual emission. In the present study, when data for all winter fluxes were taken together, fluxes were most highly correlated with deep soil temperatures rather than the soil surface temperature. Such a high correlation can be attributed to the relatively increased respiration of the deep soil where the temperature was higher than the soil surface temperature. Thus, deeper soil temperature is a better predictor of winter CO2 fluxes in cold and snowy ecosystems. 相似文献
3.
Examination of the method for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration 总被引:6,自引:1,他引:6
Toshie Nakadai Hiroshi Koizumi Youzou Usami Mitsumasa Satoh Takehisa Oikawa 《Ecological Research》1993,8(1):65-71
An acceleration of soil respiration with decreasing CO2 concentration was suggested in the field measurements. The result supporrs that obtained in laboratory experiments in our
previous study. The CO2 concentrations in a chamber of the alkali absorption method (the AA-method) were about 150–250 parts/106 lower than that in the atmosphere (about 350 parts/106), while those observed in the open-flow IRGA method (the OF-method) were nearly equal to the soil surface CO2 levels. The AA-method at such low CO2 levels in the chamber appears to overestimate the soil respiration. Our results showed that the rates obtained by the AA-method
were about twice as large as those by the OF-method in field and laboratory measurements. This finding has important consequences
with respect to the validity of the existing data obtained by the AA-method and the estimation of changes in the terrestrial
carbon flow with elevated CO2 相似文献
4.
二氧化碳储存通量对森林生态系统碳收支的影响 总被引:5,自引:0,他引:5
涡度相关系统观测高度以下的CO2储存通量对准确评价森林生态系统与大气间净CO2交换量(NEE)有着重要的影响.本研究以长白山阔叶红松林为研究对象,利用2003年的涡度相关观测数据以及CO2浓度廓线数据,分析了CO2储存通量的变化规律及其对碳收支过程的影响.结果表明:涡度相关观测高度以下的CO2储存通量具有典型的日变化特征,其最大变化量出现在大气稳定与不稳定层结转换期.利用涡度相关系统观测的单点CO2浓度变化方法与利用CO2浓度廓线方法计算的CO2储存通量差异不显著.忽略CO2储存通量,在半小时尺度上会造成对夜间和白天的NEE分别低估25%和19%,在日和年尺度上,会对NEE低估10%和25%;忽略CO2储存通量,会低估Michaelis-Menten光响应方程及Lloyd-Taylor呼吸方程的参数,并且对表观初始量子效率α和参考呼吸Rref的低估最大;忽略CO2储存通量,在半小时、日及年尺度上,均会对总光合作用(GPP)和生态系统呼吸(Re)低估约20%. 相似文献
5.
Hiroshi Koizumi Toshie Nakadai Youzou Usami Mitsumasa Satoh Masae Shiyomi Takehisa Oikawa 《Ecological Research》1991,6(3):227-232
In order to assess the validity of conventional methods for measuring CO2 flux from soil, the relationship between soil microbial respiration and ambient CO2 concentration was studied using an open-flow infra-red gas analyser (IRGA) method. Andosol from an upland field in central
Japan was used as a soil sample. Soil microbial respiration activity was depressed with the increase of CO2 concentration in ventilated air from 0 to 1000 ppmv. At 1000 ppmv, the respiration rate was less than half of that at 0 ppmv.
Thus, it is likely that soil respiration rate is overestimated by the alkali absorption method, because CO2 concentration in the absorption chamber is much lower than the normal level. Metabolic responses to CO2 concentration were different among groups of soil microorganisms. The bacteria actinomycetes group cultivated on agar medium
showed a more sensitive response to the CO2 concentration than the filamentous fungi group. 相似文献
6.
Soil respiration of Alaskan tundra at elevated atmospheric carbon dioxide concentrations 总被引:3,自引:0,他引:3
Summary CO2 efflux from tussock tundra in Alaska that had been exposed to elevated CO2 for 2.5 growing seasons was measured to assess the effect of long- and short-term CO2 enrichment on soil respiration. Long-term treatments were: 348, 514, and 683 μll−1 CO2 and 680 μll−1 CO2+4°C above ambient. Measurements were made at 5 CO2 concentrations between 87 and 680 μll−1 CO2. Neither long- or short-term CO2 enrichment significantly affected soil CO2 efflux. Tundra developed at elevated temperature and 680 μll−1 CO2 had slightly higher, but not statistically different, mean respiration rates compared to untreated tundra and to tundra under
CO2 control alone. 相似文献
7.
The elevated concentration of atmospheric CO2 may result in a decline of leaf nutritional quality (especially N) and an increase in some kinds of defensive secondary components
(such as phenolics). The changes in the phytochemistry of trees, combined with the effect of elevated CO2
per se, have a potential negative influence on insect herbivores. Here, we review the effect of elevated CO2 on the performance of leaffeeding forest insects at individual-level and community-level. The elevated CO2
per se have little influence on the metabolism of insects. Over half of the tree-insect experimental systems show that the performance
of individual insect become poorer under high-CO2 grown trees; but the others show that the insects have just little or no response to the treatments. The direction and magnitude
of the changes in the performance of insects could be mediated by various factors. The effects of treatment are strongly species-dependent.
The magnitude of changes in the phytochemistry, the sensitivity and adaptive capacity of insects to the poorer leaf quality,
the differences in plant growth conditions and experimental methods, and the mediated effects of other environmental factors
(such as soil nutrient availability, light, temperature, O3) were all closely related to the final performance of insects. However, the larvae’s consumption usually increased under
enriched CO2 treatment, which was widely thought to be a compensatory response to poorer plant quality. The experiments on forest community-level
found identically a reduction in herbivory, which was contrary to the results from small-scale experiments. The changes in
insect population and the actual response of consumption by leaf-feeding forest insects under CO2 enrichment remain unclear, and more field-based experiments need to be conducted.
__________
Translated from Chinese Journal of Applied Ecology, 2006, 17(4): 720–726 [译自: 应用生态学报] 相似文献
8.
Indirect partitioning of soil respiration in a series of evergreen forest ecosystems 总被引:1,自引:0,他引:1
A simple estimation of heterotrophic respiration can be obtained analytically as the y-intercept of the linear regression between soil-surface CO2 efflux and root biomass. In the present study, a development of this indirect methodology is presented by taking into consideration
both the temporal variation and the spatial heterogeneity of heterotrophic respiration. For this purpose, soil CO2 efflux, soil carbon content and main stand characteristics were estimated in seven evergreen forest ecosystems along an elevation
gradient ranging from 250 to 1740 m. For each site and for each sampling date the measured soil CO2 efflux (R
S) was predicted with the model R
S = a × S
C + b × R
D ± ε, where S
C is soil carbon content per unit area to a depth of 30 cm and R
D is the root density of the 2–5 mm root class. Regressions with statistically significant a and b coefficients allowed the indirect separation of the two components of soil CO2 efflux. Considering that the different sampling dates were characterized by different soil temperature, it was possible to
investigate the temporal and thermal dependency of autotrophic and heterotrophic respiration. It was estimated that annual
autotrophic respiration accounts for 16–58% of total soil CO2 efflux in the seven different evergreen ecosystems. In addition, our observations show a decrease of annual autotrophic respiration
at increasing availability of soil nitrogen.
Section Editor: A. Hodge 相似文献
9.
在2017年1月1日-2017年12月31日期间,采用涡度相关法对位于亚热带-暖温带气候过渡区的河南宝天曼国家级自然保护区的65年生锐齿栎(Quercus aliena)天然次生林的碳通量进行了连续观测。结果表明:在观测期间,该森林生态系统在生长季5-10月份为碳汇,非生长季各月为碳源,净碳吸收量与释放量分别在7月和4月达到最大。净生态系统生产力为569.4 g C m-2a-1,生态系统呼吸为529.9 g C m-2a-1,总生态系统生产力为1099.3 g C m-2a-1。30min尺度上夜间净生态系统碳交换量与5cm深度土壤温度的关系可用指数方程表示(R2=0.21,P < 0.001),其温度敏感性系数(Temperature sensitivity coefficient,Q10)为2.2。如果排除夜间通量观测的误差,处在海拔较高地区的夜间低温和非生长季的低温抑制了生态系统呼吸排放,可能导致全年生态系统呼吸量较低。在生长季5-10月份,各月的白天净生态系统碳交换量对光合有效辐射的响应符合直角双曲线模型,初始光能利用效率、平均最大光合速率和白天平均生态系统呼吸强度呈明显的季节变化,范围分别是0.06-0.12 μmol CO2 μmol-1 photon、0.44-1.47 mg CO2 m-2s-1和0.07-0.19 mg CO2 m-2s-1。夏季7、8月份,较高的饱和水汽压差对白天锐齿栎林的碳吸收有明显的抑制作用;生长季末期9月份较高的土壤含水量对白天锐齿栎林的碳吸收也产生了抑制作用,表明生长末期降水过多影响森林的碳吸收。 相似文献
10.
The aim of this study was to evaluate a measuring technique for determining soil CO2 efflux from large soil samples having undisturbed structure under controlled laboratory conditions. Further objectives were
to use the developed measuring method for comparing soil CO2 efflux from samples, collected in three different soil management systems at various soil water content values. The experimental
technique was tested and optimised for timing of sampling by taking air samples after 1, 3 and 6 hours of incubation. Based
on the results, the incubation time was set to three hours. The CO2 efflux measured for different soil management systems was the highest in the no-till and the lowest in the ploughing treatment,
which was in accordance with measurements on accessible organic carbon for microbes. An increase in CO2 efflux with increasing soil water content was found in the studied soil water content range. Our results indicate that soil
respiration rates, measured directly after tillage operations, can highly differ from those measured long after. 相似文献
11.
Griffin Kevin L. Bashkin Michael A. Thomas Richard B. Strain Boyd R. 《Plant and Soil》1997,190(1):11-18
We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH
4
+
, and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (mol CO2 plant–1 s–1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (mol CO2 g root–1 s–1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 mol g–1 s–1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 mol g–1 s–1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species. 相似文献
12.
13.
地质封存将工业和能源相关领域生产活动产生的二氧化碳(CO2)进行捕集并注入到深部地下岩石构造中,以实现长期储存的目标,是降低温室气体排放、实现CO2长期封存的重要可行性手段之一。向深部地下地质构造中注入大量CO2会导致深地环境发生显著变化,进而引起原生微生物活性及群落结构发生明显改变。因此,地质封存CO2能够直接或间接影响深地微生物驱动的生物地球化学过程。同时,微生物在短期和长期的超临界CO2(scCO2)胁迫作用下,也会通过不同的适应性进化方式影响CO2在地下环境中的迁移、转化和赋存形态。本文介绍了国内外二氧化碳捕获与封存发展现状以及地质封存CO2影响条件下的scCO2-水-微生物-矿物的相互作用领域的最新科研进展,并展望了利用深地微生物强化CO2固定以及将其转化为高附加值产物的潜力。 相似文献
14.
Leaf carbon isotope ratios of plants from a subtropical monsoon forest 总被引:12,自引:0,他引:12
Summary Carbon isotope ratios were used to survey the distribution of photosynthetic pathways among taxa, the relationship between photosynthetic pathway and habitat light levels, and the relationship between intercellular CO2 levels of C3 plants and habitat light levels within a subtropical monsoon forest in southern China. Of 128 species, most (94) possessed the C3 photosynthetic pathway; 33 species possessed the C4 pathway and all of these were restricted to high light locations. There was one epiphytic CAM species. The C3 species were classified as occurring in open, intermediate, and closed canopy sites. Among C3 species, carbon isotope ratios tended to become more negative with decreasing light availability in the habitat.C.I.W.D.P.B. Pub no 931 相似文献
15.
Effects of increased soil water availability on grassland ecosystem carbon dioxide fluxes 总被引:2,自引:0,他引:2
There is considerable interest in how ecosystems will respond to changes in precipitation. Alterations in rain and snowfall
are expected to influence the spatio-temporal patterns of plant and soil processes that are controlled by soil moisture, and
potentially, the amount of carbon (C) exchanged between the atmosphere and ecosystems. Because grasslands cover over one third
of the terrestrial landscape, understanding controls on grassland C processes will be important to forecast how changes in
precipitation regimes will influence the global C cycle. In this study we examined how irrigation affects carbon dioxide (CO2) fluxes in five widely variable grasslands of Yellowstone National Park during a year of approximately average growing season
precipitation. We irrigated plots every 2 weeks with 25% of the monthly 30-year average of precipitation resulting in plots
receiving approximately 150% of the usual growing season water in the form of rain and supplemented irrigation. Ecosystem
CO2 fluxes were measured with a closed chamber-system once a month from May-September on irrigated and unirrigated plots in each
grassland. Soil moisture was closely associated with CO2 fluxes and shoot biomass, and was between 1.6% and 11.5% higher at the irrigated plots (values from wettest to driest grassland)
during times of measurements. When examining the effect of irrigation throughout the growing season (May–September) across
sites, we found that water additions increased ecosystem CO2 fluxes at the two driest and the wettest sites, suggesting that these sites were water-limited during the climatically average
precipitation conditions of the 2005 growing season. In contrast, no consistent responses to irrigation were detected at the
two sites with intermediate soil moisture. Thus, the ecosystem CO2 fluxes at those sites were not water-limited, when considering their responses to supplemental water throughout the whole
season. In contrast, when we explored how the effect of irrigation varied temporally, we found that irrigation increased ecosystem
CO2 fluxes at all the sites late in the growing season (September). The spatial differences in the response of ecosystem CO2 fluxes to irrigation likely can be explained by site specific differences in soil and vegetation properties. The temporal
effects likely were due to delayed plant senescence that promoted plant and soil activity later into the year. Our results
suggest that in Yellowstone National Park, above-normal amounts of soil moisture will only stimulate CO2 fluxes across a portion of the ecosystem. Thus, depending on the topographic location, grassland CO2 fluxes can be water-limited or not. Such information is important to accurately predict how changes in precipitation/soil
moisture will affect CO2 dynamics and how they may feed back to the global C cycle. 相似文献
16.
皆伐火烧对亚热带森林不同深度土壤CO2通量的影响 总被引:1,自引:0,他引:1
评估不同深度土壤的CO_2通量是研究土壤碳动态的重要手段。目前有关皆伐火烧对森林土壤碳排放的影响研究仅局限于表层土壤,而对不同深度土壤碳排放影响鲜见报道。以米槠(Castanopsis carlesii)次生林(对照)及其皆伐火烧后林地为研究对象,利用非红外散射CO_2探头测定土壤CO_2浓度,并结合Fick第一扩散法则估算不同深度(0—80 cm)土壤CO_2通量。结果表明:(1)皆伐火烧改变土壤向大气排放的表观CO_2通量,在皆伐火烧后的2个月内土壤表观CO_2通量显著高于对照68%;2个月后,土壤表观CO_2通量低于对照37%。(2)皆伐火烧后,除10—20 cm的CO_2通量提高外,其余各深度(0—10、20—40、40—60 cm和60—80 cm)的CO_2通量均降低。同时,皆伐火烧改变不同土层对土壤呼吸的贡献率,降低0—10 cm土层的贡献率,提高10—20 cm土层的贡献率。(3)对照样地仅0—10 cm土壤CO_2通量与温度呈显著指数相关,10—40 cm深度CO_2通量则与土壤含水率呈显著线性相关。皆伐火烧后0—10 cm和10—20 cm处土壤的CO_2通量均与温度呈指数相关。说明皆伐火烧改变了不同深度土壤CO_2通量对于环境因子的响应。因此为准确评估和预测皆伐火烧对土壤与大气间碳交换的影响,应考虑皆伐火烧后不同时期土壤CO_2通量的变化,以及不同深度土壤CO_2通量对皆伐火烧的响应。 相似文献
17.
Soil respiration in a poor upland site of Scots pine stand subjected to elevated temperatures and atmospheric carbon concentration 总被引:7,自引:0,他引:7
Soil respiration rates under elevated temperature and atmospheric CO2 concentrations were studied in eastern Finland (62° 47N, 30° 58E, 144 m.a.s.1.) around naturally regenerated 20 – 30 years old Scots pine trees, enclosed in open top chambers. The production of CO2 varied spatially and temporally, but clearly followed the changes in temperature measured at the soil surface. However, soil respiration in the open control was higher than that in chambers; i.e. the chamber itself changed the conditions by increasing the temperature, altering the movement of water, and thereby soil moisture. Nevertheless, an elevation in the concentration of atmospheric CO2 raised soil respiration and brought it nearer to the level in the open control. An increase in temperature seemed to inhibit this rise, possibly because of an imbalance between temperature and moisture. 相似文献
18.
E. M. Baggs 《Plant and Soil》2006,284(1-2):1-5
Little is known about the respiratory components of CO2 emitted from soils and attaining a reliable quantification of the contribution of root respiration remains one of the major
challenges facing ecosystem research. Resolving this would provide major advances in our ability to predict ecosystem responses
to climate change. The merits and technical and theoretical difficulties associated with different approaches adopted for
partitioning respiration components are discussed here. The way forward is suggested to be the development of non-invasive
regression analysis validated by stable isotope approaches to increase the sensitivity of model functions to include components
of rhizosphere microbial activity, changing root biomass and the dynamics of a wide range of soil C pools.
Section Editor: A. Hodge 相似文献
19.
大气CO2浓度升高对春玉米土壤呼吸的影响 总被引:2,自引:0,他引:2
为探讨春玉米不同生育期土壤呼吸速率对大气CO2浓度升高的响应,以黄土高原旱作春玉米为研究对象,通过改进的开顶式气室(OTC)模拟大气CO2浓度升高的环境,在田间条件下设置自然大气CO2浓度(CK)、OTC对照(OTC,CO2浓度同CK)与CO2浓度升高(OTC+CO2,OTC系统自动控制CO2浓度700 μmol/mol)3种处理。研究了旱区覆膜高产栽培春玉米播前(V0)、六叶期(V6)、九叶期(V9)、吐丝期(R1)、乳熟期(R3)、蜡熟期(R5)及完熟期(R6)土壤呼吸速率对大气CO2浓度升高的响应特征,以及大气CO2浓度升高对土壤呼吸速率的温度与水分效应的影响。研究发现,OTC+CO2处理土壤呼吸速率,与CK相比,在R3和R5期分别增加43%、104%(P<0.05),与OTC相比,R3和R5期分别提升了63%、109%(P<0.05);OTC处理与CK相比,在整个生育期对土壤呼吸影响不显著;3种处理条件下,土壤温度和水分随生育期变化趋势基本一致,土壤呼吸速率与土壤温度和水分分别呈指数相关和抛物线型相关;结果表明:大气CO2浓度升高对土壤呼吸的影响因生育期而异,土壤温度和土壤水分是影响旱地农田土壤呼吸的重要因素,CO2浓度升高会使土壤呼吸温度效应值(Q10)降低,土壤呼吸对土壤水分响应的阈值提高。 相似文献
20.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系 总被引:3,自引:0,他引:3
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。 相似文献