首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细根分解受根序和土壤深度的潜在影响。使用根序法分根,将落叶松Larix gmelini根系分为两类:一级根、二级根为一类(1—2级根),即低级根;三级根和四级跟为另一类(3—4级根),即高级根。采用埋袋法对落叶松低级根和高级根在不同土壤深度(0—10、10—20 cm和20—30 cm)进行了为期862 d的分解实验,探讨不同根序细根分解规律,养分释放及其影响。结果表明:1—2级根的分解速率比3—4级分解速率慢,这种规律同时存在于不同深度的土壤中。在空间上,低级根和高级根的分解速率均随土壤深度的增加而降低,高级根的降低趋势更明显。随着分解时间的进行,各个土层之间的分解率在低级根之间差异更大。细根分解过程中,落叶松不同根序养分的释放特征不同。N释放速率总体上随细根根序增加而增大,随土壤深度的增加而降低。  相似文献   

2.
温彬  高勤峰  董双林  宁鲁光 《生态学报》2016,36(14):4327-4336
于2012年7月至2013年4月调查了荣成靖海湾3个不同水深的刺参(Apostichopus japonicus)养殖池塘内大型底栖动物的构成,以了解不同水深对刺参养殖池塘环境条件的影响以及由此引起的大型底栖生物群落结构的改变。结果表明:3个不同水深梯度池塘(1#浅水位、2#正常水位和3#高水位)底部光照强度、叶绿素a(Chla)和总有机物(TOM)含量存在显著差异,各池塘水温差异不显著。光强、Chla和TOM含量在夏季、冬季和春季均表现为1#池塘显著高于3#池塘;秋季各池塘间光强和TOM含量差异不显著,Chla含量则表现为3#池塘显著高于1#池塘。各季节3个池塘间大型底栖动物在种类组成、丰度、生物量和多样性指数上均存在显著性差异。大型底栖动物丰度和生物量夏季均表现为1#池塘显著高于3#池塘,秋季和冬季则相反;春季1#池塘丰度显著高于3#池塘,生物量则差异不显著。这些差异主要与其各自优势种及其优势度指数大小有关。大型底栖动物多样性指数夏季和秋季均表现为1#池塘高于3#池塘,春季则相反,冬季各池塘间多样性指数差异不显著。单因子相似性分析(ANOSIM)表明,各季节3个池塘间大型底栖动物群落结构均存在显著差异,表明水深梯度对刺参养殖池塘大型底栖动物群落结构造成显著性影响。相似性百分比分析(SIMPER)显示,各季节对3个池塘间大型底栖动物群落差异起主要作用的物种为各个池塘的优势种。典范对应分析(CCA)表明,水深、Chla和TOM含量为影响大型底栖动物群落的主要环境因子。  相似文献   

3.
This paper presents the results of a study on the clonal growth of Typha domingensis Pers. in the Imboassica lagoon, in the intervals between four drawdowns. Sampling was performed over a period of two years, from permanent quadrats, in the four months after each of the drawdowns. The high mortality of the macrophytes after each drawdown is followed by a period in which the stands recover by producing ramets. The results have shown that the growth areas around the boundary of the stand (boundary band, BB) and one further towards the middle (innermost zone, IZ) show different recovery characteristics. The BB area recovered more quickly after the first drawdown, but both areas had the same accumulated biomass after the third drawdown. At the contact boundary, (CB) with stand of Eleocharis mutata, a decrease in the growth of T. domingensis occurred with a progressive invasion of E. mutata in its stand. After 10 months with no drawdown, T. domingensis produced a large quantity of inflorescences, which indicates recovery. It can therefore be concluded that successive drawdowns may decrease the regeneration ability of T. domingensis, favoring the expansion of E. mutata in the lagoon.  相似文献   

4.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

5.
李文  王鑫  潘艺雯  刘以珍  何亮  张欢  应智霞  刘颖  葛刚 《生态学报》2018,38(9):3014-3021
水淹深度是影响湿地植物生长和繁殖的关键因子,不同湿地植物对淹水深度存在着不同响应。然而,在水情不断变化的背景下,鄱阳湖洲滩湿地植物种群和群落如何变化还不清楚。为了探究淹水深度对湿地植物生长的影响,并预测鄱阳湖洲滩湿地植被分布的趋势,采用控制实验模拟了不同水淹深度(0、0.5、1 m和2 m)下鄱阳湖湿地3种优势植物(灰化薹草(Carex cinerascens)、南荻(Miscanthus lutarioriparius)和虉草(Phalaris arundinacea))的生长和繁殖情况。实验结果表明:1)水淹对灰化薹草总生物量的影响最显著。遭受水淹时,灰化薹草把大部分的生物量集中在地下部分;随着水淹深度逐渐增加,南荻的生物量逐渐减少;不同深度水淹对虉草生物量没有产生显著影响(P0.05)。就生物量而言,虉草对水淹的适应性强于其他两种植物。2)不同水淹深度下,灰化薹草的株高都显著降低;而南荻只在2 m水淹梯度下株高才显著降低。在枯水年时,下降的水位有利于南荻向较低高程迁移。3)不同深度水淹对灰化薹草的分株没有产生显著影响(P0.05);而虉草在经过2 m水淹后分株数显著高于其他水淹深度。在丰水年时,相比于灰化薹草和南荻,升高的水位对虉草的繁殖影响较小。在一个水位周期性变化的湿地生态系统中,不同深度的水淹对植物的生长及退水后的繁殖产生了严重影响,研究结果为预测水文变化对湿地植被的生存和分布提供了重要的依据。  相似文献   

6.
Unionid clams were collected at 1–2 m, 3–4 m and 6–7 m depth in lake Mattsee, a moderately mesotrophic lake, to investigate the effect of depth on clam growth and age structure. No significant differences in age structure of Anodonta cygnea were found (p=0.65). Three and ten years old clams were present at all depths, but in different percentages. Whereas at 1–2 m 13.3% of the collected clams were <4 years old, this percentage was 4.4% at 6–7 m and 7.1% at 3–4 m. A greater percentage (6.7%) of older mussels (9, 10 years) were collected at 6–7 m than at 1–2 m (2.2%). Growth declined with depth. Total length at a given age of clams at 1–2 m and 3–4 m did not differ (p=0.54), whereas differences were significant between clams at 1–2 m and 6–7 m (p<0.05) as well as between 3–4 m and 6–7 m (p<0.05). The Growth constant k was highest at 1–2 m depth.  相似文献   

7.
Palma-Silva  C.  Albertoni  E.F.  Esteves  F.A. 《Plant Ecology》2000,148(2):157-164
This investigation of the aquatic macrophyte Eleocharis mutata (L.) Roem. Et Schult. was carried out in Imboassica lagoon, a coastal lagoon in Macaé (22°50S; 44°42W), in the northern part of Rio de Janeiro, Brazil. The sandbar separating this lagoon from the ocean has been opened several times for flood control and to allow the entrance of marine species of commercial interest. The barrier bar has been breached without appropriate planning, and the consequences of breaching for the lagoon ecosystem are poorly understood. These openings drastically affect the structure and functioning of the lagoon, but there are no data on possible effects on macrophyte communities. In this project, we obtained data on the increase of the distribution, biomass accumulation and production rates of E. mutata in the establishment of a new stand, in an effort to relate effects of sandbar breach events to the expansion of this species. During 22 months of sampling, 4 breachings of the sandbar occurred, and E. mutata increased its area of coverage by about 8104 m2, or 2.5% of the total area of the lagoon. The total aerial biomass reached a maximum of 1515 g DW m–2, and the underground biomass reached 583 g DW m–2. During the establishment and development of the stand, both dead and live aerial biomass and underground biomass tended to accumulate. Aerial net primary production (ANPP) was quite variable, reaching a maximum of 18.9 g DW m–2 d–1. We conclude that the sudden variations in water level caused by breaches in the sandbar were beneficial to the expansion of this species in Imboassica lagoon.  相似文献   

8.
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.  相似文献   

9.
Growth of a floating-leaved plant,Hydrocharis dubia L., was examined under varying nutrient conditions between 0.3 and 30 mgN l−1 total inorganic nitrogen.H. dubia plants cultured under the most nutrient-rich condition showed the highest maximum ramet density (736 m−2), the highest maximum biomass (80.4 g dry weight m−2), and the highest total net production (185 g dry weight m−2 in 82 days). Plants under nutrient-poor conditions had a relatively large proportion of root biomass and a small proportion of leaves with a long life span. Compared with other floating-leaved and terrestrial plants, the maximum biomass ofH. dubia was relatively small. This, and the rapid biomass turnover, was related to the short life span of leaves (13.2–18.7 days) and large biomass distribution to leaves.  相似文献   

10.
杨帆  安丰华  杨洪涛  王志春 《生态学报》2016,36(6):1591-1598
通过人工控制地下水位模拟试验,研究了不同潜水埋深下羊草净光合速率和蒸腾速率。结果表明地下潜水埋深直接影响羊草的正常生理活动。潜水埋深在1.0—2.5m之间,潜水埋深越浅,羊草表现为净光合速率和蒸腾速率越高;随着潜水埋深的增加,羊草净光合速率和蒸腾速率减小,生理活动下降。不同月份羊草净光合速率和蒸腾速率与潜水埋深呈幂函数关系,不同时间羊草净光合速率和蒸腾速率与潜水埋深呈幂函数、指数函数和对数函数关系,相关系数均在0.90以上,因此可以用函数方程来估算不同潜水埋深下的羊草净光合速率和蒸腾速率。结果为松嫩平原苏打盐渍土区植被恢复与环境保护提供科学依据。  相似文献   

11.
在人工气候箱内,通过设置不同水深梯度(0 cm;3 cm;6 cm)和光照强度(标准光照:400μmol m~(-2) s~(-1);低光照:240μmol m~(-2) s~(-1)),对长喙毛茛泽泻生物量、叶型特征和生理特征的影响,探讨长喙毛茛泽泻对不同水深和光照强度的适应性以及其濒危原因。结果表明:在同一光照强度下长喙毛茛泽泻叶生物量、茎生物量、根生物量、总生物量、叶宽、叶面积、过氧化物酶(POD)活性、可溶性蛋白和可溶性糖都随水深的增加呈先升高后降低的趋势;丙二醛(MDA)随水深的增加呈先降低后升高的趋势;叶柄长度与水深呈正相关;脯氨酸含量与水深呈负相关。在同一水深条件下,光照强度的降低显著降低了叶生物量、茎生物量、总生物量、过氧化物酶(POD)活性、可溶性蛋白、可溶性糖和脯氨酸的含量。由此可知,水深的变化和光照不足都将导致长喙毛茛泽泻生长减弱,且长喙毛茛泽泻对这些不利条件的适应能力较弱。剧烈的水深变化和上层植物的荫蔽可能是导致其濒危的重要原因。  相似文献   

12.
The aim of this study was to examine the variation in treatment performance at three depths, and the degree of vertical mixing, within a 1.0 m deep horizontal subsurface-flow constructed wetland (HSSF-CW) planted with Schoenoplectus tabernaemontani (Gmel.) Palla, and treating primary settled municipal wastewater in sub-tropical New South Wales, Australia. Water samples were collected from the upper (0.17 m), middle (0.5 m), and lower (0.83 m) depths at five equi-spaced sample points along the longitudinal axis of the 8.8 m2 bed during two trials. Analysis of covariance (ANCOVA) indicated that the rate of pollutant concentration reduction between the three depths was not significantly different (p > 0.05) for all of the measured parameters (dissolved oxygen (DO), hydrogen electrode potentials (Eh), 5-day biochemical oxygen demand (BOD5)) total nitrogen (TN), TKN, and NH4-N. Thus, it can be concluded that the break-down of contaminants as wastewater moved through the HSSF-CW was approximately uniform across the 1.0 m depth profile. The lack of a significant depth effect can be largely explained by the substantial amount of vertical mixing that was observed when a pulse of lithium tracer was injected into the middle depth of the first intermediate sampling point. The tracer rapidly migrated vertically into the upper and lower depths as water moved through the bed and was almost completely mixed between the three depths by the time it reached the last intermediate sampling point.The majority of BOD5 removal occurred within the first-third of the bed where vegetation cover was poor. Performance of the bed declined over time from Trial 1 to Trial 2, possibly due to a cumulative build-up of organic matter within the substrate as a result of limited oxygen transfer throughout the 1.0 m depth of substrate via root leakage or diffusion across the air–water interface. Root penetration was limited to the upper 0.4 m of the substrate, with the majority of below-ground biomass forming a dense mat in the upper 0.2 m. A comparison of two-parameter (KC*) first-order volumetric rate constant (Kv20) with those obtained from 0.4 to 0.6 m deep HSSF-CW in the same region indicate that a doubling of the wetted depth resulted in no improvement in BOD5 removal and a decline in TN removal on an areal basis. Further investigations are warranted, comparing the performance of replicated beds spanning a range of depths (e.g. 0.25, 0.5 and 1.0 m) in order to quantitatively determine the optimal depth of HSSF-CWs treating domestic wastewater.  相似文献   

13.
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (A N) and stomatal conductance (g s) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.  相似文献   

14.
The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services to both local and regional communities as well as an important ecological function through the transition between terrestrial and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but forms a floating mat towards the middle of the wetland and at the wetland/lake interface. Cyperus papyrus and Miscanthidium violaceum vegetation typically dominate the permanently inundated wetland areas along most of the shores of Lake Victoria. Due to the prevailing climatic and hydrological catchment conditions, these macrophytic plants (papyrus in particular) tend to exhibit high net productivity and nutrient uptake which strongly influences both wetland status and lake water quality. In addition, these wetlands provide important economic livelihoods for the local populations. The integrity and physical structure of these wetlands strongly influences their associated mass transport mechanisms (water, nutrients and carbon) and ecosystem processes. Wetland degradation in Africa is an increasing problem, as these ecosystems are relied upon to attenuate industrial, urban and agricultural pollution and supply numerous services and resources. In an integrated project focused on the wetlands of Lake Victoria, the ecological and economic aspects of littoral wetlands were examined and new instruments developed for their sustainable management.  相似文献   

15.
Ziziphus lotus (L.) Lam. is a deciduous shrub with intricately branched stems in the Rhamnaceae family. It's a dominant and economically important species widely distributed in active sand dunes in the southern desert of Tunisia. To provide basic information for its conservation and reintroduction, we studied the influence of environmental factors on seed germination patterns. The germination responses of seeds were determined over a wide range of constant temperatures (10–50 °C), polyethylene glycol (PEG)-6000 solutions of different osmotic potentials (0 to − 1 MPa) and burial depths (1–10 cm). Temperatures between 15 and 45 °C seem to be favorable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the most suitable temperature found (35 °C). The highest germination percentages (100%) were obtained under control conditions without PEG, and increasing moisture stress progressively inhibited seed germination, which was less than 5% at − 1 MPa. When tested for germination in distilled water, after PEG treatments, seeds germinated to the same extent as when fresh. When seeds buried deeply, there was a significant decrease in seedling emergence percentage and rate. Seedlings of Z. lotus emerged well at depths of 1–2 cm and could not emerge when sand burial depth was > 4 cm.  相似文献   

16.
The invasion of Myriophyllum spicatum into Lake Nasser, and its impact on submerged macrophyte communities are quantitatively documented. Samples of macrophytes, water and hydrosoil were collected from 17 sites, in October and November 2002. The average dry weight standing crop of each species per grapnel haul was determined at each depth zone (sampling site). Twenty-one environmental variables were measured (12 water and 9 hydrosoil variables). Canonical correspondence analysis (CCA) was used to determine species–environment relationships. Comparing these relationships of the present study with those detected in 1988–1990 indicated significant changes in water and hydrosoil characteristics. These changes are also implicated in the submerged macrophyte communities. M. spicatum has replaced the originally dominant submerged macrophyte Najas marina subsp. armata. The study indicated that the invasion of M. spicatum depends not only on its attributes, but also on the physico-chemical characteristics of Lake Nasser.  相似文献   

17.
The population and production ecology of aZizania latifolia stand at a sheltered shore of the Hitachi-Tone River were investigated. Shoot emergence was observed twice a year; the fist was a synchronized shoot emergence in April and the second was from August to October. Aboveground biomass was mostly occupied by leaves and peaked at 1500 g dry weight m−2 in August. The belowground biomass also reached its peak, 750 g dry weight m−2, in August. The secondary shoots were small in spite of their high density. Leaves were produced continuously throughout the season. The leaf life span was as short as 55.6 days for cohorts that emerged from May through to September. Total annual net production ofZ. latifolia could be more than 3400 g dry weight m−2. Shoot clusters of several centimeters were observed in April. The following self-thinning caused a regular distribution of the remaining shoots in August. Most shoots produced in August to October were found near a shoot persisting since April. They showed more concentrated distribution than shoots in April. A large biomass allocation to leaves and the ability to produce many clump shoots during the late growing period may facilitate dominance ofZ. latifolia in relatively sheltered sites.  相似文献   

18.
为摸清提前钩梢对雷竹地上构件生物量积累与分配及其异速生长模式的影响,为雷竹林合理钩梢提供参考,调查了5月(提前钩梢)、6月(常规时间钩梢)钩梢和未钩梢雷竹林新竹当年(1年生立竹)和第2年(2年生立竹)秆、枝、叶生物量,分析了立竹地上构件生物量积累与分配特征及其异速生长。结果表明:钩梢使雷竹1年生立竹秆、枝、叶生物量显著下降,秆生物量分配比例显著升高,枝、叶生物量分配比例显著下降,枝、叶-总生物量异速生长指数显著增大,秆-总生物量异速生长指数显著减小,且常规时间钩梢立竹叶生物量及其分配比例和出叶强度均显著高于提前钩梢立竹。钩梢也导致雷竹2年生立竹秆、枝、叶生物量明显下降,但秆、枝、叶-总生物量异速生长指数均显著增大,常规时间钩梢立竹叶生物量仅略低于未钩梢立竹,且叶生物量分配比例及出叶强度均显著高于未钩梢和提前钩梢立竹。研究表明提前钩梢对雷竹叶生物量及其分配比例、出叶强度及异速生长均有明显的负面影响,不利于雷竹林光合能力的发挥,因此,雷竹林不宜提前钩梢。  相似文献   

19.
Evans M  Green B  Newgrain K 《Oecologia》2003,137(2):171-180
Wombats are large, fossorial, herbivorous marsupials exhibiting physical and behavioural characteristics indicative of extreme energy conservation. Previous energetics studies have been limited to their basal metabolism under laboratory conditions; little is known of the energetics of free-living wombats. We measured seasonal field metabolic rates (FMR) and water fluxes in the three species of free-living wombat using the doubly labelled water technique, to further investigate the extent of energy conservation in the Vombatidae. Measurements were taken during the wet and dry annual extremes of their characteristically harsh environments, which corresponded to seasonal extremes of food and water availability. Seasonal FMRs for all wombat species were lower than that recorded for other marsupials and well below that predicted for herbivorous mammals. Dry-season FMR of Lasiorhinus kreftii was 40% of that predicted for a mammal. Wombats maintained energy balance during the poor season by reducing FMR to about half that of the good season. Water flux rates during the dry season for the arid-adapted Lasiorhinus are amongst the lowest recorded for mammals, being only 25% of that predicted for a similarly sized herbivorous mammal. These low water flux rates enable wombats in semi-arid areas to maintain water balance without drinking. Estimated food and nitrogen intake rates were also low. We conclude that the energetically frugal lifestyle of the Vombatidae is amongst the most extreme for mammals.  相似文献   

20.
Allometry, biomass, and productivity of mangrove forests: A review   总被引:7,自引:8,他引:7  
We review 72 published articles to elucidate characteristics of biomass allocation and productivity of mangrove forests and also introduce recent progress on the study of mangrove allometry to solve the site- and species-specific problems. This includes the testing of a common allometric equation, which may be applicable to mangroves worldwide. The biomass of mangrove forests varies with age, dominant species, and locality. In primary mangrove forests, the above-ground biomass tends to be relatively low near the sea and increases inland. On a global scale, mangrove forests in the tropics have much higher above-ground biomass than those in temperate areas. Mangroves often accumulate large amounts of biomass in their roots, and the above-ground biomass to below-ground biomass ratio of mangrove forests is significantly low compared to that of upland forests (ANCOVA, P < 0.01). Several studies have reported on the growth increment of biomass and litter production in mangrove forests. We introduce some recent studies using the so-called “summation method” and investigate the trends in net primary production (NPP). For crown heights below 10 m, the above-ground NPP of mangrove forests is significantly higher (ANOVA, P < 0.01) than in those of tropical upland forests. The above-ground litter production is generally high in mangrove forests. Moreover, in many mangrove forests, the rate of soil respiration is low, possibly because of anaerobic soil conditions. These trends in biomass allocation, NPP, and soil respiration will result in high net ecosystem production, making mangrove forests highly efficient carbon sinks in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号